首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Improvement of cookability is an important objective in breeding of food legumes. The present study was undertaken to investigate variation in cookability in soybean. Genetic variation was observed among lines from two crosses. Absence of associations between cookability and protein content, oil content and grain yield indicate that selection for cookability can be achieved without adversely affecting the expression of these characters.  相似文献   

2.
This work describes the production of transgenic, fertile plants of soybean [Glycine max (L.) Merrill]. The transformation method combines the advantages of somatic embryo genesis with the efficiency of particle bombardment of tissues that have a great capacity for in vitro proliferation and regeneration. The results described here represent the first report of transformation of soybean cultivars recommended for commercial growing in South Brazil using somatic embryogenesis, and may open the field for the improvement of this crop in this country by genetic engineering. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Soybean DNA fingerprints were analyzed by digoxigenin-labeled oligonucleotide probes complementary to simple repetitive sequences. The clearest and most polymorphic patterns were obtained with (AAT)6 as a probe, with which all 47 soybean cultivars tested could be distinguished. However, DNA fingerprints of individuals within cultivars showed the same pattern. Using (CT)8, (GAA)5 or (AAGG)4 as probes, clear polymorphic patterns among cultivars and accessions in the subgenus Soja (Glycine max and Glycine soja) were not observed, while quite different patterns were found in accessions in the subgenus Glycine. The results suggest that G. max and G. soja are closer in their genome structure. DNA fingerprints of reciprocal crosses between cultivars and accessions in the subgenus Soja were similar, and contained bands of both parents. In an F2 population from these crosses, such bands segregated in a Mendelian fashion.  相似文献   

4.
The long juvenile period characteristic (LJP), which delays flowering under short day conditions, has been identified in soybean cultivars (Glycine max L. Merrill). This characteristic may be especially important as it increases the range of adaptation of soybean in low latitudes and gives greater flexibility for sowing periods within the same latitude. The inheritance of the long juvenile period was studied in the BR80-6778 soybean line to provide knowledge to support the development of cultivars adapted to short day conditions. Cultivars with classic flowering, Paraná, Bossier, Bragg and Davis, which flower early under short day conditions, were also used as parents in single crosses. They were crossed among themselves and with the genotypes with LJP, BR80-6778 and MG/BR 22 (Garimpo). The study was carried out under short day conditions (early sowings) in greenhouses and in the field at Embrapa National Soybean Research Center, Londrina, PR. Flowering was assessed daily. The results indicated that the BR89-6778 line shares a pair of alleles with the Paraná cultivar, and when associated with the cc allele retards flowering under short day conditions. The following genotype constitutions were attributed to the cultivars: Paraná (aaBBCC), Bossier (AabbCC), and BR80-6778 (aaBBcc). The combination of the genes aabb and aabbcc has a pronounced effect on the manifestation of the trait. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Summary The photoperiodic response on 12 characters in 40 soybean, Glycine max (L.) Merrill, cultivars were investigated using 10-hour (short day) and 16-hour (long day) photoperiods. Seventeen cultivars showed no significant difference between photoperiods for all 12 characters. Seven cultivars showed significant difference for only one trait. Phenotypic changes in 17 cultivars may be due to factors other than photoperiod. Number of pods per plant, days to maturity, and number of nodes per plant were highly correlated with yield per plant in both photoperiods. Invariably, the cultivars which had significant differences in the numbers of flowers produced per plant between the two photoperiods also had significant differences in the numbers of pods per plant and yield. First node to flower, plant height at flowering, days to flowering, nodes at flowering, and the 100-seed weight were least influenced by the photoperiods in most of the cultivars, while the height at maturity, number of nodes at maturity, number of days to maturity, and yield were most influenced.AVRDC Journal paper 46 (78–88).  相似文献   

6.
R. J. Singh  T. Hymowitz 《Euphytica》1985,34(1):187-192
Summary The objective of the present paper is to provide information on the morphology and cytology of an intersub-generic hybrid (2n=59) between Glycine tomentella Hayata (2n=78) and G. max (L.) Merr. (2n=40) obtained through in vitro immature seed culture. The hybrid plant was slow in vegetative growth and twinning like the female parent but morphologically was intermediate between both parents for several traits. At metaphase I, the average chromosome associations and ranges for 25 cells were 44.0 I (37–51)+7.5 II (3–11). The plant was completely pollen and seed sterile. The present investigation suggests that wild perennial Glycine species can be exploited as either the male or female parent in wide hybridization programs with the soybean, G. max.  相似文献   

7.
Summary A partial male sterility system in the soybean (Glycine max (L.) Merr.) germplasm population AP6(SI)CI was found to be controlled monogenically by a recessive allele, msp. Observations of msp msp plants in different environments suggested that environmental conditions significantly affect expressivity of the msp allele with respect to male sterility. We obtained no experimental evidence of cytoplasmic effects on msp expression. Background genotypes, however, seem to affect msp expressivity through their determination of flowering dates and resultant interactions with varying environmental conditions.Homogeneous populations of partially male-sterile plants can be generated by increasing families of msp msp plants in fertility-inducing environments, if measures are implemented to prevent the introduction and/or build-up of fertile genotypes that arise from natural cross-pollinations.Joint contribution: North Central Region, Agricultural Research, Science and Education Administration, U.S. Department of Agriculture, and Journal Paper No. J-9596 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011; Project 2107.  相似文献   

8.
Soybean cultivars carrying the `long juvenile trait' show a delayed flowering response under short day conditions. The incorporation of this character into genotypes of agronomic interest may allow a broader range of sowing dates and latitudes for a single cultivar adaptation. The objective of this work was to identify molecular markers linked to the juvenile locus in soybean. Experiments were carried out using two pairs of near isogenic lines(NILs) differing in the presence of the long juvenile trait, and RAPD markers. Four hundred primers were first screened to find polymorphism associated with the trait. Additional differences between NILs were sought by digesting the genomic DNA with five restriction enzymes. Polymorphic fragments detected between NILs were tested for linkage to the juvenile locus in the corresponding F2 segregating populations. Marker bc357-HaeIII was linked (χ2L = 46.316) to the juvenile locus with an estimated recombination frequency of 0.13 ± 0.03in one of the genetic backgrounds studied. The fragment was cloned, sequenced and converted into a SCAR marker. Moreover,bc357-HaeIII was used as RFLP probe. Both, SCAR and RFLP generated markers linked to the juvenile locus in the two genetic backgrounds analysed. Results presented in this work can be utilised for both, the localisation of the gene associated with the character and for tagging the juvenile trait in soybean breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Green stem disorder (GSD) is one of the most serious syndromes affecting soybean (Glycine max) cultivation in Japan. In GSD, stems remain green even when pods mature. When soybean plants develop GSD, seed surfaces are soiled by tissue fluid and seed quality is deteriorated during machine harvesting. We performed quantitative trait locus (QTL) analyses for GSD insensitivity using recombinant inbred lines (RILs; n = 154) derived from a cross between an insensitive line (‘Touhoku 129’) and a sensitive leading cultivar (‘Tachinagaha’) during a 6-year evaluation. Three effective QTLs were detected. The influences of these QTLs were in the following order: qGSD1 (LG_H) > qGSD2 (LG_F) > qGSD3 (LG_L). At these three QTLs, ‘Touhoku 129’ genotypes exhibited more GSD insensitivity than ‘Tachinagaha’ genotypes. The lower incidence of GSD for ‘Touhoku129’ was attributable primarily to these three QTLs because RILs harboring a ‘Touhoku 129’ genotype at the three QTLs exhibited a GSD incidence similar to that of ‘Touhoku 129.’ Although a limitation of this study is that only one mapping population was evaluated, this QTL information and the flanking markers of these QTLs would be effective tools for resolving GSD in soybean breeding programs.  相似文献   

10.
C. R. Spehar 《Euphytica》1994,76(3):203-213
Summary Selection for aluminium tolerance is necessary to adapt the soya bean crop to vast areas of acid soil in the tropics such as the Brazilian Savannas (Cerrados). The breeding programmes include field testing of large numbers of varieties. The tests are laborious, time consuming and need to be repeated to minimize effects of uncontrolled environmental factors. The present results show that augmented designs are efficient in the identification of Al-tolerant genotypes. These designs (i) allow elimination of soil differences as common causes for error in comparison of entries, and (ii) can be successfully employed in genetic studies and breeding programmes for crop improvement, being more cost effective than fully replicated trials.  相似文献   

11.
Summary Bradyrhizobium japonicum strain G49 has been the only inoculum used in French soils. Soybean (Glycine max L. Merr.) cultivars were selected and tested according to their performances with this rhizobial strain. The aim of the present study was to determine the consequences of strain substitution on N2 fixation abilities of various genotypes. Three genotypes and cultivar Weber, in combination with B. japonicum strain G49 or SMGS1, were cultivated in pots and tested for nitrogenase activity under differing nitrogen nutrition conditions. The reliability of ARA (acetylene reduction activity) measurement for assessing symbiotic nitrogen fixation under the experimental conditions used was checked. Genotypic variability for symbiotic fixation activity was observed with each strain under soil culture conditions; important genotype x strain interactions were also involved. These results were corroborated for the protein yield and other yield component performances of the various genotype-strain associations. Thus, in France, the replacement of strain G49 with another one might result in the alteration of the relative agronomic performances of the soybean cultivars, since N2 fixation is considered as a major factor of soybean productivity.  相似文献   

12.
Summary A simple technique for the vegetative propagation of F1 hybrid soya bean plants is described. By growing 1- and 2-wk old cuttings, all treated with 1-naphtylacetic acid and the fungicide metalaxyl, average success rates of 18 and 34% respectively were obtained. Cuttings grown under a long-day regime for two months produced large numbers of F2 seeds to be used in genetic studies. This method reduced the time and effort necessary to obtain hybrid progeny.  相似文献   

13.
Summary Investigations of variable expression of msp partial male sterility in soybeans (Glycine max (L.) Merr.) showed that higher temperatures promote male fertility in msp homozygotes and showed that infectious agents are not intrinsic to the sterility system. Exchange grafts failed to modify fertility levels of msp msp rootstocks, Msp Msp scions, and their self-progeny. Tests for soybean mosaic virus and tobacco ringspot virus were negative in partially male-sterile plants, in control fertile plants, and in self-progeny of grafted plants. Growth-chamber experiments and field observations manifested that male fertility of msp msp plants is higher in hot environments than in cooler ones. The unexpected aberrant ratios of fertile to partially male-sterile plants observed in 1977 (Stelly & Palmer, 1980) are explainable on the basis of msp temperature sensitivity.Our observations suggest that homogeneous msp msp populations may be increased in hot environments.Research Geneticist, SEA-AR, USDA, Iowa State University, Ames, Iowa 50011, USA.  相似文献   

14.
Y. N. Bai  J. Y. Gai 《Euphytica》2005,145(1-2):25-32
At present, no report on inheritance of male fertility restoration has been released, yet more than 10 cytoplasmic-nuclear male-sterile soybean lines as well as their maintainers and restorers have been developed. Based on our previous work, 25 restorers for the male-sterile line NJCMS1A were identified and the inheritance of male fertility restoration for these restorers was studied. The results showed that F1s between NJCMS1A and its restorers were completely male-fertile. The numbers of fertile and sterile plants in the F2 population of Cross I (NJCMS1A × N23601) and Cross II (NJCMS1A × N23683) corresponded to a segregation ratio of 15:1, and the numbers of non-segregation lines, 3:1 segregation lines and 15:1 segregation lines in F2:3 of the same two crosses fitted a 7:4:4 genotypic segregation ratio. The testcross BC1F1s between the F1s of the above two crosses and NJCMS1A, NJCMS1B showed a 3:1 segregation ratio. Accordingly, it was inferred that two pairs of duplicate dominant genes controlled the male fertility restoration of NJCMS1A in both crosses. Meanwhile, F2 of other 23 crosses between NJCMS1A and its 23 restorers showed a fertility segregation ratio of 3:1 or 15:1. The F1s of the five testcrosses between NJCMS1A and the F1s of five crosses selected from the above 23 crosses showed that fertility segregation was 3:1 in BC1F1s between NJCMS1A and F1s of the crosses of which fertility segregation fitted 15:1 in F2 population, while fertility segregation in BC1F1s was 1:1 for those fertility segregation fitted 3:1 in F2 population. Allelism tests showed that restore genes of all restorers in the experiment were allelic to two pairs of dominant genes. All results showed that some restorers bore one pair of dominant restore gene and the others bore two pairs of duplicate dominant gene. The mechanism of F1 male sterility of the cross N8855 × N2899 was discussed.  相似文献   

15.
It is very important to efficiently study and use genetic diversity resources in crop breeding and sustainable agriculture. In this study, different sampling methods and sample sizes were compared in order to optimize the strategies for building a rationally sized core collection of Chinese soybean (Glycine max). The diversity in the core collection captured more than 70% of that in the pre-core collection, no matter what sampling methods were used, at a sampling proportion of 1%. Core collections established with both simple sequence repeat (SSR) marker data and agronomic traits were more representative than those chosen on an independent basis. An optimal sampling method for a soybean core collection was determined, in which strategy ‘S’ (allocating accessions to clusters according to the proportion of square root of the original sample size within each ecotype) was used based on SSR and agronomic data. Curve estimation was used to estimate the allelic richness of the entire Chinese soybean germplasm and a minimum sample size for a core collection, on which a sampling proportion of about 2% was determined to be optimal for a core collection. Further analysis on the core collection with fourteen agronomic traits and allelic constitution at 60 SSR loci suggested that it highly represented the entire collections both on genetic structure and diversity distribution. This core collection would provide an effective platform in proper exploitation of soybean germplasm resources for the study of complex traits and discovering important novel traits for crop genetic development.  相似文献   

16.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   

17.
Summary Progress was evaluated after four cycles of recurrent selection among S0 plants of Glycine max (L.) Merr. in which selection was either for maturity (MAT) or seed protein (PRO). The two populations, MAT and PRO, were developed from an initial population that was a combination of a line with 48.4% seed protein and two F2 populations segregating for male sterility. Intermating was facilitated by genetic male-sterility and the selection intensity was 20% in each cycle of the two populations. Selection for early maturity advanced the average maturity a significant 2.7±0.34 days cycle–1 and reduced seed yield a non-significant 9.1±2.95 g plant–1 cycle–1. Selection increased mean seed protein a significant 0.8±0.15 percentage points cycle–1 and decreased percent seed oil a non-significant 0.5±0.17 percentage points cycle–1. Correlation coefficients between seed protein and seed yield varied from 0.18 to –0.21 in the four cycles indicating plants with favorable combinations of seed yield and seed protein could be identified. Selection in these two populations would be effective for early maturity and for increased seed protein.  相似文献   

18.
Summary Two crosses between Glycine max (L.) Merr. and G. soja Sieb. & Zucc. parents were used to study the association between isozyme marker loci and agronomic and seed composition traits in soybean. The parents possessed different alleles at six isozyme loci for Cross 1 (A80-244036 × PI 326581) and at eight isozyme loci for Cross 2 (A81-157007 × PI 342618A). A total of 480 BC2F4:6 lines from the two crosses was evaluated for 13 traits in two environments. Lines were grouped in locus classes from 0 to 5 according to the number of loci homozygous for the G. soja alleles that they possessed. Within each locus class, each isozyme genotype was represented by five random lines.Selection for G. max alleles at the isozyme loci was not effective in recovering the recurrent parent phenotype in either cross. In cross 1, however, BC2F4-derived lines in the 0- or 1- locus class more closely resembled the G. max parent than lines in the 4- or 5- locus classes for most of the agronomic and seed composition traits evaluated. Significant associations were found between particular isozyme genotypes and every trait analyzed. The estimated effect of genes linked to the Pgm1 locus was a delay in maturity of 6.0±3.4 days. In cross 1, the Idh2 locus was associated with a significant effect on linolenic acid content. The percentage of variation accounted for by the models of estimation varied according to the heritability of the trait. The R2 was high (up to 78%) for maturity, lodging, and vining, and low (up to 21%) for seed yield. Most of the variation was associated with the BC2F1 family from which the lines were derived. There was little evidence that digenic epistasis was an important source of variation.Journal Paper No. J-13505 of the Iowa Agric. Home Econ. Exp. Stn., Ames, IA, Project 2475.  相似文献   

19.
Summary Interspecific hybrids have been obtained in an incompatible cross between Glycine max and G. tomentella through the in vitro culture of hybrid embryos. The percentage of successful pod setting in the crosses averaged 12.8% but there were marked differences depending on the soybean cultivar used as the female parent. Hybrid embryos at globular to heart stages were extracted from the embryo sac 15–25 days after pollination and cultured in vitro. Hybrid plants were successfully obtained by culturing the embryos on B5 medium supplemented with 0.1 mg/l IBA followed by culture on B5 medium supplemented with 0.1 mg/l TBA plus 0.25 mg/l 2-iP. The F1 plants resembled the wild male parent in growth form, but had an intermediate leaf shape between that of the parents.  相似文献   

20.
Soybean (Glycine max (L.) Merrill) production is expanding into temperate and tropical environments. Yield stability studies under rhizobia inoculation were investigated in 24 soybean genotypes over two successive growing seasons at three agro‐ecological zone of Nigeria, during the 2015–2016 rainy seasons. Treatments were arranged in a split‐plot design and replicated three times. Treatments were 24 soybean genotypes and three levels of rhizobia inoculation. Results indicated that the variation of genotypes and inoculation on percentage emergence, height, number of leaves, number of branches per plant, total biomass yield, above‐ground biomass and seed yield was significant (p = .05). The effects of genotypes (G), environment (E) and G × E interactions on seed yield were also significant. Two soybean genotypes (TGx 1989‐45F and TGx 1990‐110FN) were identified as the most promising in relation to yield stability. Of the three locations, Abuja produced the least interaction effects followed by Igabi and may be most appropriate environments for large‐scale soybean production. Appropriate inoculation of soybean with inoculants (LegumeFix and or NoduMax) should be encouraged in farmer's field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号