首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 107 毫秒
1.
用口蹄疫A型病毒AF/72株,经RT-PCR获得其VP1基因序列,并与GenBank中的其他5株A型口蹄疫病毒株比对,同源性均大于90%。将此病毒灭活后与弗氏佐剂联合制成灭活疫苗免疫豚鼠后分离血清,经液相阻断ELISA和微量细胞中和试验检测此血清的抗体效价,其均值分别为2.093和1.227。用微量细胞中和试验分别测定了AF/72参考血清对5株A型口蹄疫病毒的中和抗体效价,各试验重复3次,其平均值为2.156。分别计算AF/72对5株不同病毒株的r值,结果为0.79~0.92,均值为0.85。按照OIE标准,AF/72具有较强的免疫原性,抗原谱广,可作为制造口蹄疫A型疫苗的备选毒株。  相似文献   

2.
用口蹄疫A型病毒AF/72株的第3代乳鼠组织毒,通过乳鼠适应至6代,获得该毒株的乳鼠组织毒AF/72/MF6,经测定其LD50为10^-8.0·mL^-1;经RT-PCR获得其VP1基因序列,并与GenBank中的其它6株口蹄疫A型病毒株比对,同源性大于85%;经无菌检验和外源病毒检验,纯净性达到兽用生物制品标准要求;经间接夹心ELISA测定,OD值均大于0.2,且经乳鼠中和试验证实该毒仅能被口蹄疫A型标准血清中和,具有型特异性;经紫外分光光度法测定其146S含量,均值为189 ng·mL^-1,远大于22 ng·mL^-1的国际标准。综合纯净性检验、特异性检验和146S含量测定结果,可确定AF/72/MF6为口蹄疫A型病毒AF/72株乳鼠组织毒的标准毒。  相似文献   

3.
用口蹄疫A型病毒AF/72株的细胞毒AF/72/MF6/BF12,经测定其TCID50为108.0/ml;经RT-PCR获得其VP1基因序列,并与GenBank中的其他7株口蹄疫A型病毒株比对,同源性均大于85%;经间接夹心ELISA测定,OD值均大于0.2,且该毒仅能被口蹄疫A型标准血清中和,具有型特异性;经紫外分光光度法测定其146S含量,均值为189 ng/ml,远大于22 ng/ml的国际标准.将此细胞毒与弗氏佐剂联合制成灭活疫苗免疫豚鼠后分离血清,经无菌检验和外源病毒检验,纯净性达到兽用生物制品标准要求;经ELISA检测此血清的抗体滴度、原血清、强阳性血清和弱阳性血清的中和效价均远小于1 ∶ 45.参照标准的要求,确定强阳性血清为口蹄疫A型病毒株AF/72的参考血清.  相似文献   

4.
通过限制性酶切位点将P12A和3C基因插入到带有双启动子(Pp10和PPH)的杆状病毒表达载体p Fast BacTMDual,转化E.coli DH10感受态细胞进行蓝白斑筛选,将鉴定正确的重组杆状病毒质粒转染Sf9细胞后收获重组杆状病毒r Bac-Dual-P12A3C,通过间接免疫荧光(IFA)和蛋白质印迹(Western-blot)检测衣壳蛋白的表达。IFA结果表明表达产物能够被A型FMDV猪抗阳性血清所识别,鉴定正确并具有良好反应原性。Western-blot检测到81 k D(P12A)、57 k D(VP0+VP3)、47 k D(VP3+VP1)、33 k D(VP0)和24 k D(VP1/VP3)5条蛋白条带,与预期相符。该研究为进一步研究A型口蹄疫病毒空衣壳的体外组装提供了试验依据。  相似文献   

5.
[目的]测定A型口蹄疫病毒A/HeN/1/2009株全基因组序列并分析其基因特征,为研究我国最近发生的A型口蹄疫病毒的致病性、流行规律以及筛选适用的疫情防控疫苗株奠定分子基础。[方法]应用RT-PCR方法,分段扩增、克隆A/HeN/1/2009株基因,并进行基因测序;借助DNAStar分子生物学软件,从分子流行病学角度分析A/HeN/1/2009株与参考毒株之间可能的遗传衍化关系。[结果]该毒株基因组全长8 171 nts[不包括poly(C)区段和poly(A)尾巴],其中5'-UTR和3'-UTR分别为1 080、92 nts,蛋白编码区为6 999 nts。分析A/HeN/1/2009株遗传衍化关系显示,该毒株划为东南亚拓扑型Laos03系的VN09亚系,同源性依次为87.3%~91.8%、93.7%~94.5%和96.9%~98.4%。[结论]VP1中A24V、N85R、S196T,3A中I61V、T128S、E147G和A134V在该毒群的进化过程中扮演重要角色;A/SH/1/2009株VP1 140-160基序为RSD。  相似文献   

6.
对口蹄疫病毒AF72株P1结构蛋白基因进行了扩增、克隆,并采用DNAStar Protean软件对P1蛋白的二级结构、可塑性、亲水性、表面可及性及抗原指数等参数进行分析,综合预测其B细胞表位分布.结果表明:FMDV AF72株P1基因全长2211bp,包含完整的开放阅读框,编码737个氨基酸,其中,VP1长639bp,编码213个氨基酸,VP2长654bp,编码218个氨基酸,VP3长663bp,编码221个氨基酸,VP4长255bp,编码85个氨基酸.P1结构蛋白的二级结构较为复杂,含有较多的β片层结构和转角结构,VP1、VP2和VP3上均有多个区域为B细胞优势表位,VP4上也有少量的潜在B细胞表位.  相似文献   

7.
C型口蹄疫病毒型特异性抗原的表达与鉴定   总被引:2,自引:1,他引:2  
[目的]为C型FMDV型特异性多克隆抗体、单克隆抗体的制备和FMDV定型提供理论依据。[方法]以含有C型口蹄疫病毒(FMDV)结构蛋白基因VP1的重组质粒pGEM—CP1为模板,设计特异性表达引物,扩增VP1及其c端编码区。对C型口蹄疫病毒VP1及其c端进行原核表达,并测定反应原性。利用纯化的C型VP1及其C端融合蛋白建立间接EHSA,分别对0、A、C、Asia1四型豚鼠阳性血清进行检测,确定C型VP1及其C端与其他3型FMDV抗体的型间交叉反应性。[结果]构建了pPR0-CVP1、pPR0-CVP1c重组原核表达质粒,实现了C型口蹄疫病毒VP1及其C端的高效表达,目的蛋白的分子量大小分别为33kD和20kD。Westernblot显示,VP1及其C端融合蛋白均可与对应血清型的豚鼠阳性血清反应。C型VP1及其C端与其他血清型的FMDV阳性血清均未发生交叉反应,且以VP1C端的型特异性最好。[结论]获得了C型FMDV特异性抗原。  相似文献   

8.
[目的]为C型FMDV型特异性多克隆抗体、单克隆抗体的制备及FMDV定型提供理论依据。[方法]以含有C型口蹄疫病毒(FMDV)结构蛋白基因VP1的重组质粒pGEM—CP1为模板,设计特异性表达引物,扩增VP1及其C端编码区。对C型口蹄疫病毒VP1及其C端进行原核表达,并测定反应原性。利用纯化的C型VP1及其C端融合蛋白建立间接ELISA,分别对O、A、C、Asia14型豚鼠阳性血清进行检测,确定C型VP1及其C端与其他3型FMDV抗体的型间交叉反应性。[结果]构建了pPRO-CVP1、pPRBO-CVP1c重组原核表达质粒,实现了C型口蹄疫病毒VP1及其C端的高效表达,目的蛋白的分子量大小分别为33和20kD。Westernblot显示。VPl及其C端融合蛋白均可与对应血清型的豚鼠阳性血清反应。C型VP1及其C端与其他血清型的FMDv阳性血清均未发生交叉反应。且以VP1c端的型特异性最好。[结论]获得了C型FMDV特异性抗原。  相似文献   

9.
口蹄疫是一种严重危害畜牧业生产的烈性传染病.为了促进A型口蹄疫病毒(FMDV)基因工程活载体疫苗的研制,选取A型FMDV编码序列中的衣壳蛋白前体PI-2A基因中的VP1和VP3以及亚洲Ⅰ型蛋白酶3C基因,插入家蚕杆状病毒转移载体pVL1393中,构建重组载体pVL-P1-2A3C,并与线性化病毒Bm-BacPAK6 DNA共转染家蚕BmN细胞,获得重组病毒Bm-P1-2A3C.将重组病毒感染家蚕5龄幼虫,以双抗体夹心ELISA法检测血淋巴中的表达产物,结果显示目的蛋白在感染病毒后108 h的蚕血淋巴中表达量最高,A型抗原表达呈阳性的最大稀释倍数为1024,而亚洲Ⅰ型抗原表达呈阳性的最大稀释倍数为2048.结果表明A型和亚洲Ⅰ型FMDV的P1-2A3C基因已在家蚕体内获得表达.  相似文献   

10.
pXZ500生物合成多肽苗,用四个批次,分11个组别进行豚鼠实验室内免疫试验,保护率在80%以上,平均90%;用三个批次做猪的室内免疫试验,平均保护率在80%以上。用三个批次进行猪的田间试验,取回室内攻击,保护率也在80%以上。同一多肽苗在豚鼠与猪之间的免疫效果具有一致性。  相似文献   

11.
口蹄疫病毒结构蛋白P1基因植物表达载体构建及鉴定   总被引:1,自引:0,他引:1  
通过RT-PCR克隆了口蹄疫病毒(FMDV)全长P1基因,然后与植物的表达盒融合构建了重组质粒pB1131SP1、pBIP1和pBIAP1,并将质粒转化到根癌农杆菌LBA4404和EHA105中,获得了植物双元表达载体。  相似文献   

12.
对口蹄疫病毒全基因组序列特征的分析有助于了解口蹄疫病毒复制、翻译等生命活动的相关机制.利用DNAStar和DNAMAN软件,对249株口蹄疫病毒全基因组序列进行了比对分析.结果表明,口蹄疫病毒ORF的长度为5 982~7 020 bp,平均长度为6 975 bp,编码1 994~2 340个氨基酸.各基因的核酸序列同源...  相似文献   

13.
口蹄疫植物疫苗的研究进展   总被引:2,自引:0,他引:2  
植物疫苗是利用植物表达重组抗原蛋白来生产疫苗。在植物中表达的抗原能够保持其自身的免疫原性。论文简要阐述了近10年来用植物表达系统生产口蹄疫疫苗的研究进展、优缺点及其应用前景。  相似文献   

14.
口蹄疫病毒基因组的遗传变异剖析   总被引:2,自引:0,他引:2  
 【目的】明确口蹄疫病毒基因组的结构特征及其变异与结构、功能的关系以及系统发生关系。【方法】利用DNAstar和Clustalx程序进行184个口蹄疫病毒基因组序列的同源性分析、多重排比。【结果】口蹄疫病毒基因组ORF大小有所差异,范围为6 963~7 120 nt,编码2 320~2 339 aa的多聚蛋白。核苷酸和氨基酸序列的同源性,7个不同血清型间>77.6%和>78.3%,本研究发现了可能和生物学功能相关的新的保守和变异区域。【结论】口蹄疫病毒RNA的变异类型丰富和多样性程度较高,自然界存在的毒株可能大于血清学和测序发现的FMDV的毒株数目。  相似文献   

15.
[目的]探究Asia1型口蹄疫病毒感染PK-15细胞后能否诱导自噬的发生,分析细胞自噬对口蹄疫病毒复制的影响。[方法]用未经处理的PK-15细胞和自噬抑制剂3-MA处理的PK-15细胞分别感染口蹄疫病毒,通过蛋白免疫印迹和共聚焦激光显微镜检测自噬的诱导情况。[结果]自噬标志分子LC3-Ⅱ和LC3-Ⅰ蛋白水平的比值增加,并且LC3特异的绿色荧光聚集;自噬抑制剂3-MA处理细胞后口蹄疫病毒复制水平显著上调。[结论]Asia1型口蹄疫病毒感染PK-15细胞后能够诱导发生自噬,而自噬又促进口蹄疫病毒的复制。  相似文献   

16.
[目的]研究几种(海藻糖、蔗糖、山梨醇、聚乙烯吡咯烷酮、硫脲、明胶、L-精氨酸、抗坏血酸)保护剂,为口蹄疫抗原保护剂配方的形成提供参考。[方法]用三因素、三水平、双重复正交试验方法筛选出了对口蹄疫病毒(FMDV)抗原保护效果最好的I(4#)保护剂配方,以加保护剂A(已申请专利)的病毒为对照,比较其在不同条件下的TCID50和146s抗原的含量。[结果]通过方差分析4#保护剂保存病毒测得TCID50极显著的高于1、3、5、6、7、8号,显著高于2、9。将4#保护剂加入被保存的病毒抗原中,分别于4℃下保存90、120、150 d,其logTCID50分别为5.3、5.0和4.5,而加保护剂A(已申请专利)的对照病毒则为5.0、4.5和4.3;在37℃下保存40、50和60 h,其logT-CID50分别为4.5、2.5和1.0;而加保护剂A的对照病毒则为3.5、1.5和0.5,为了进一步验证保护剂对FMDV抗原的保护性能,进行了FMDV146s抗原含量的测定。分别于4℃下保存150 d,37℃下保存40 h,测得结果分别为0.796、0.462μg/ml,而加保护剂A的对照病毒则为0.602、0.307μg/ml。[结论]该复合配方保护剂I(4#)对FMDV有效抗原的保护作用优于保护剂A,尤其是病毒保护剂对提高FMDV的冷冻保存时间和耐热效能作用明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号