共查询到20条相似文献,搜索用时 15 毫秒
1.
Homer LM Clarke CR Weingarten AJ 《Journal of veterinary pharmacology and therapeutics》2005,28(3):287-291
A pharmacokinetic study was conducted to compare the oral bioavailability of tepoxalin and its pharmacologically active acid metabolite in fasted dogs and dogs fed either a low-fat or high-fat commercial diet. Using a cross-over design, six beagles were administered tepoxalin (10 mg/kg) intravenously (i.v.) and orally (p.o.) after being fed one of three diets (fasted, low-fat, or high-fat). Thereafter, blood samples were collected at frequent intervals, concentrations of tepoxalin and acid metabolite in plasma were determined by high performance liquid chromatography, and pharmacokinetic parameters were estimated. After i.v. dosing, the mean (+/-SD) half-life of elimination (t(1/2(beta))) was 2.45 +/- 1.47 h. After p.o. administration, plasma concentrations of acid metabolite were consistently higher than corresponding concentrations of the parent tepoxalin, indicating that tepoxalin is subject to a substantial first-pass effect. Mean (+/-SD) peak concentrations of tepoxalin were significantly higher after feeding of low-fat (1.08 +/- 0.37 microg/mL) and high-fat (1.19 +/- 0.29 microg/mL) diets than in fasted dogs (0.53 +/- 0.20 microg/mL), suggesting that feeding improves oral bioavailability. 相似文献
2.
W J Tranquilli L M Graning J C Thurmon G J Benson S G Moum E L Lentz 《American journal of veterinary research》1991,52(5):662-664
The thiamylal sparing effect of midazolam was studied in 30 healthy Beagle and mixed-breed dogs. Using a replicated Latin square design, all dogs were given placebo (saline solution) and 0.025, 0.05, 0.1, and 0.2 mg of midazolam/kg of body weight prior to IV administration of thiamylal sodium. The 0.1 and 0.2 mg/kg dosages significantly decreased the amount of thiamylal required to obtund swallowing reflex and easily achieve endotracheal intubation. Midazolam at 0.1 and 0.2 mg/kg reduced thiamylal requirement by 16.4% and 18.9%, respectively, whereas the 0.05 mg/kg dosage decreased thiamylal requirement by only 6.8%. The 0.2 mg/kg dosage did not further decrease thiamylal requirement beyond that achieved with the 0.1 mg/kg dosage of midazolam. This study demonstrates that the preanesthetic IV administration of midazolam reduces the thiamylal dose necessary to accomplish intubation. The optimal preanesthetic dosage (lowest dosage with significant effect) was 0.1 mg/kg. 相似文献
3.
Fusellier M Desfontis JC Madec S Gautier F Marescaux L Debailleul M Gogny M 《Journal of veterinary pharmacology and therapeutics》2005,28(6):581-586
The objective of this study was to investigate renal function in clinically normal dogs receiving tepoxalin, a nonsteroidal inflammatory drug, either in association with or without an angiotensin-converting enzyme inhibitor (ACEI). Ten adult female Beagle dogs were used in the three phases of the study. The dogs were administered the drugs once daily for 7 days (experiment 1: placebo/tepoxalin/tepoxalin and benazepril; experiment 2: enalapril/tepoxalin and enalapril) or for 28 days (experiment 3: tepoxalin and benazepril together). Renal function was assessed by measurement of glomerular filtration rate (GFR) by renal scintigraphy [(renal uptake of 99mTc-diethylenetriaminepentacetic acid (DTPA)] and plasma clearance of 99mTc-DTPA. Compared with the placebo group, renal uptake and plasma clearance of 99mTc-DTPA were not significantly modified after a 7-day period of treatment with tepoxalin or enalapril alone, tepoxalin and benazepril or tepoxalin and enalapril together. No significant change was obtained in GFR after a 28-day period of dosing with tepoxalin and benazepril together. Therefore, it was concluded that tepoxalin did not alter renal function in healthy Beagle dogs receiving ACEI. 相似文献
4.
5.
6.
Katherine J. Bennett Reza Seddighi Kaitlin A. Moorhead Kristin Messenger Sherry K. Cox Xiaocun Sun Kirby Pasloske Bruno H. Pypendop Thomas J. Doherty 《Veterinary anaesthesia and analgesia》2019,46(2):173-181
Objective
To determine the effect of fentanyl on the induction dose and minimum infusion rate of alfaxalone required to prevent movement in response to a noxious stimulus (MIRNM) in dogs.Study design
Experimental crossover design.Animals
A group of six healthy, adult, intact female mixed-breed dogs, weighing 19.7 ± 1.3 kg.Methods
Dogs were randomly administered one of three treatments at weekly intervals: premedication with 0.9% saline (treatment A), fentanyl 5 μg kg–1 (treatment ALF) or fentanyl 10 μg kg–1 (treatment AHF), administered intravenously over 5 minutes. Anesthesia was induced 5 minutes later with incremental doses of alfaxalone to achieve intubation and was maintained for 90 minutes in A with alfaxalone (0.12 mg kg–1 minute–1), in ALF with alfaxalone (0.09 mg kg–1 minute–1) and fentanyl (0.1 μg kg–1 minute–1) and in AHF with alfaxalone (0.06 mg kg–1 minute–1) and fentanyl (0.2 μg kg–1 minute–1). The alfaxalone infusion was increased or decreased by 0.006 mg kg–1 minute–1 based on positive or negative response to antebrachium stimulation (50 V, 50 Hz, 10 ms). Data were analyzed using a mixed-model anova and presented as least squares means ± standard error.Results
Alfaxalone induction doses were 3.50 ± 0.13 (A), 2.17 ± 0.10 (ALF) and 1.67 ± 0.10 mg kg–1 (AHF) and differed among treatments (p < 0.05). Alfaxalone MIRNM was 0.17 ± 0.01 (A), 0.10 ± 0.01 (ALF) and 0.07 ± 0.01 mg kg–1 minute–1 (AHF) and differed among treatments. ALF and AHF decreased the MIRNM by 44 ± 8% and 62 ± 5%, respectively (p < 0.05). Plasma alfaxalone concentrations at MIRNM were 5.82 ± 0.48 (A), 4.40 ± 0.34 (ALF) and 2.28 ± 0.09 μg mL–1 (AHF).Conclusions and clinical relevance
Fentanyl, at the doses studied, significantly decreased the alfaxalone induction dose and MIRNM. 相似文献7.
Carrie A. Davis Reza Seddighi Sherry K. Cox Xiaocun Sun Christine M. Egger Thomas J. Doherty 《Veterinary anaesthesia and analgesia》2017,44(4):727-737
Objective
To determine the effect of fentanyl on the induction dose of propofol and minimum infusion rate required to prevent movement in response to noxious stimulation (MIRNM) in dogs.Study design
Crossover experimental design.Animals
Six healthy, adult intact male Beagle dogs, mean ± standard deviation 12.6 ± 0.4 kg.Methods
Dogs were administered 0.9% saline (treatment P), fentanyl (5 μg kg?1) (treatment PLDF) or fentanyl (10 μg kg?1) (treatment PHDF) intravenously over 5 minutes. Five minutes later, anesthesia was induced with propofol (2 mg kg?1, followed by 1 mg kg?1 every 15 seconds to achieve intubation) and maintained for 90 minutes by constant rate infusions (CRIs) of propofol alone or with fentanyl: P, propofol (0.5 mg kg?1 minute?1); PLDF, propofol (0.35 mg kg?1 minute?1) and fentanyl (0.1 μg kg?1 minute?1); PHDF, propofol (0.3 mg kg?1 minute?1) and fentanyl (0.2 μg kg?1 minute?1). Propofol CRI was increased or decreased based on the response to stimulation (50 V, 50 Hz, 10 mA), with 20 minutes between adjustments. Data were analyzed using a mixed-model anova and presented as mean ± standard error.Results
ropofol induction doses were 6.16 ± 0.31, 3.67 ± 0.21 and 3.33 ± 0.42 mg kg?1 for P, PLDF and PHDF, respectively. Doses for PLDF and PHDF were significantly decreased from P (p < 0.05) but not different between treatments. Propofol MIRNM was 0.60 ± 0.04, 0.29 ± 0.02 and 0.22 ± 0.02 mg kg?1 minute?1 for P, PLDF and PHDF, respectively. MIRNM in PLDF and PHDF was significantly decreased from P. MIRNM in PLDF and PHDF were not different, but their respective percent decreases of 51 ± 3 and 63 ± 2% differed (p = 0.035).Conclusions and clinical relevance
Fentanyl, at the doses studied, caused statistically significant and clinically important decreases in the propofol induction dose and MIRNM. 相似文献8.
9.
Pasloske K Renaud R Burger J Conlon P 《Journal of veterinary pharmacology and therapeutics》1999,22(5):314-319
The pharmacokinetics of ketorolac (Toradol), a human non-narcotic, nonsteroidal anti-inflammatory drug (NSAID) of the pyrrolo-pyrrole group, was studied in six mixed breed dogs of varying ages (1-5 years). The study was performed using a randomized crossover design, with each dog initially assigned to one of two groups (intravenous (i.v.) or oral (p.o.)). Each group of three dogs received either the injectable or oral formulation of ketorolac tromethamine at 0.5 mg/kg. Serial blood samples were collected before and over 96 h following treatment. Samples were analysed by reverse phase HPLC. Individual ketorolac plasma concentration-time curves were initially evaluated by computerized curve stripping techniques followed by nonlinear least squares regression. Following i.v. administration mean (+/- SD) pharmacokinetic parameters were: elimination half-life (t1/2 beta) = 4.55 h, plasma clearance (Clp) = 1.25 (1.13) mL/kg/min, and volume of distribution at steady state (Vss) = 0.33 (0.10) L/kg. Mean (+/- SD) p.o. pharmacokinetic values were: t1/2 beta = 4.07 h, time to reach maximum concentration (tmax) = 51.2 (40.6) min, and p.o. bioavailability (F) = 100.9 (46.7)%. These results suggest that the pharmacodisposition characteristics of a clinically effective 0.5 mg/kg i.v. or p.o. single dose of ketorolac tromethamine administered to dogs is fairly similar to that observed in humans. 相似文献
10.
To determine the effect of oral administration of prednisolone on thyroid function, 12 healthy Beagles were given 1.1 mg of prednisolone/kg of body weight every 12 hours for 22 days after 8 days of diagnostic testing of the dogs before treatment with prednisolone. Thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) response tests were performed before treatment (days 1 and 8 of the study) and during treatment (days 21 and 28 of the study). Blood samples were collected daily at 8 AM and 2 and 8 PM to rule out normal daily hormone fluctuations as the cause of a potential decrease in serum triiodothyronine (T3), thyroxine (T4), and free T4 (fT4) concentrations. Serum T3, T4, and fT4 concentrations before treatment and 1 day and 21 days after the first prednisolone dose were compared by analyses of variance. Post-TSH and -TRH serum T3 and T4 concentrations before and during treatment were compared, using the Student t test for paired data. Oral administration of prednisolone significantly (P less than 0.005) decreased serum T3, T4, and fT4 concentrations in the 8 AM and 2 and 8 PM samples obtained 1 day and 21 days after the first prednisolone dose. Serum T4 and fT4 concentrations in 8 AM and 2 PM samples were significantly (P less than 0.05) lower 21 days after the first prednisolone dose than they were at 1 day after the first dose. Before treatment, serum T4 concentration in the 2 PM samples was significantly (P less than 0.05) higher than serum T4 concentration in 8 AM and 8 PM samples.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
12.
Giorgi M Cuniberti B Ye G Barbero R Sgorbini M Vercelli C Corazza M Re G 《Veterinary journal (London, England : 1997)》2011,190(1):143-149
Tepoxalin is a non-steroidal anti-inflammatory drug with analgesic, anti-inflammatory, and antipyretic properties and has been recently introduced into veterinary medicine. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profile of tepoxalin to assess whether it would be suitable for clinical use in horses. Six female fasting/fed horses were given 10mg/kg tepoxalin orally in a cross-over study. After administration, tepoxalin underwent rapid and extensive hydrolytic conversion to its carboxylic acid metabolite RWJ-20142. In animals that had been fed, the plasma concentrations of tepoxalin were undetectable, whereas in fasting animals they were close to the limit of quantification of the method. No differences between the fasting/fed groups in RWJ-20142 plasma concentrations were shown. Tepoxalin showed a strong and long-lasting ex vivo inhibitory activity against cyclooxygenase (COX)-1, mainly due to its main metabolite RWJ-20142. Tepoxalin and RWJ-20142 do not seem to possess either COX-2 or 5-lipoxygenase inhibitory activity in the horse. These features suggest that the drug is a selective COX-1 inhibitor in horses, with no significant anti-inflammatory activity. Thus, its long term use in equine practice could be of concern. 相似文献
13.
Kieren Maddern Vicki J Adams† Nichole AT Hill‡ & Elizabeth A Leece 《Veterinary anaesthesia and analgesia》2010,37(1):7-13
ObjectiveTo determine in dogs the effects of medetomidine and butorphanol, alone and in combination, on the induction dose of alfaxalone and to describe the induction and intubation conditions.Study designProspective, randomized, blinded clinical trial.AnimalsEighty-five client-owned dogs (ASA 1 or 2).MethodsSubjects were block randomized to treatment group according to temperament. The treatment groups were: medetomidine 4 μg kg?1 (M), butorphanol 0.1 mg kg?1 (B), or a combination of both (MB), all administered intramuscularly. After 30 minutes, a sedation score was assigned, and alfaxalone 0.5 mg kg?1 was administered intravenously over 60 seconds by an observer who was unaware of treatment group. Tracheal intubation conditions were assessed and, if tracheal intubation was not possible after 20 seconds, further boluses of 0.2 mg kg?1 were given every 20 seconds until intubation was achieved. Induction dose and adverse events (sneezing, twitching, paddling, excitement, apnoea and cyanosis) were recorded; induction quality and intubation conditions were scored and recorded.ResultsThe mean dose of alfaxalone required for induction was similar for groups M and B: 1.2 ± 0.4 mg kg?1. The mean dose requirement for group MB (0.8 ± 0.3 mg kg?1) was lower than groups M and B (p < 0.0001). Induction dose was not influenced by temperament or level of sedation. Induction and intubation scores did not differ between treatment groups. Adverse events were noted in 16 dogs; there was no association with treatment group, temperament or level of sedation.Conclusions and clinical relevanceMedetomidine and butorphanol administered in combination reduce the anaesthetic induction dose of alfaxalone compared to either agent alone. This difference should be taken into account when using this combination of drugs in a clinical setting. 相似文献
14.
Sedative effects of intramuscular administration of a low dose of romifidine in dogs 总被引:3,自引:0,他引:3
Lemke KA 《American journal of veterinary research》1999,60(2):162-168
OBJECTIVE: To evaluate sedative effects of IM administration of a low dose of romifidine in dogs. ANIMALS: 13 healthy adult Beagles. PROCEDURE: Physiologic saline solution (0.2 ml), 0.1 % romifidine (10, 20, or 40 microg/kg), or 10% xylazine (1 mg/kg) was given IM in a crossover study design. Heart rate, respiratory rate, rectal temperature, hemoglobin saturation, and scores for sedation, muscle relaxation, posture, auditory response, and positioning response were recorded before and at regular intervals for up to 240 minutes after drug administration. RESULTS: Scores for sedation, muscle relaxation, posture, auditory response, and positioning response increased in a dose-dependent manner after romifidine administration. Sedation induced by the highest dose of romifidine (40 microg/kg) was comparable to that induced by xylazine (1 mg/kg). Heart rate, respiratory rate, and rectal temperature decreased in a dose-dependent manner after romifidine administration, but hemoglobin saturation did not change. CONCLUSIONS AND CLINICAL IMPLICATIONS: Romifidine (10, 20, or 40 microg/kg, IM) is an effective sedative in dogs, but causes a decrease in heart rate, respiratory rate, and rectal temperature. 相似文献
15.
OBJECTIVE: To evaluate effect of alternate-day oral administration of prednisolone on endogenous plasma ACTH concentration and adrenocortical response to exogenous ACTH in dogs. ANIMALS: 12 Beagles. PROCEDURE: Dogs were allotted to 2 groups (group 1, 8 dogs treated with 1 mg of prednisolone/kg of body weight; group 2, 4 dogs given excipient only). During a 30-day period, blood samples were collected for determination of plasma ACTH and cortisol concentrations before, during, and after treatment with prednisolone. From day 7 to 23, prednisolone or excipient was given on alternate days. Sample collection (48-hour period with 6-hour intervals) was performed on days 1, 7, 15, 21, and 28; on other days, sample collection was performed at 24-hour intervals. Pre- and post-ACTH plasma cortisol concentrations were determined on days 3, 9, 17, 23, and 30. RESULTS: A significant difference was detected between treatment and time for group 1. Plasma ACTH concentrations significantly decreased for 18 to 24 hours after prednisolone treatment in group-1 dogs. At 24 to 48 hours, ACTH concentrations were numerically higher but not significantly different in group-1 dogs. Post-ACTH plasma cortisol concentration significantly decreased after 1 dose of prednisolone and became more profound during the treatment period. However, post-ACTH cortisol concentration returned to the reference range 1 week after prednisolone administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Single oral administration of 1 mg of prednisolone/kg significantly suppressed plasma ACTH concentration in dogs for 18 to 24 hours after treatment. Alternate-day treatment did not prevent suppression, as documented by the response to ACTH. 相似文献
16.
17.
Behrend EN Kemppainen RJ Bruyette DS Busch KA Lee HP 《Journal of the American Veterinary Medical Association》2006,229(4):528-530
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation. 相似文献
18.
OBJECTIVE: To evaluate effects of preoperative administration of carprofen on renal function and hemostasis in dogs undergoing general anesthesia for fracture repair. ANIMALS: 26 client-owned dogs. PROCEDURE: Anesthesia was induced with levomethadone, diazepam, and propofol and maintained by administration of isoflurane in oxygen-nitrous oxide. Carprofen (4 mg/kg, SC) was administered 1 hour before induction to 13 dogs (group 1) and after extubation to the other 13 dogs (group 2). All dogs also received carprofen (4 mg/kg, SC, q 24 h) for the first 4 days after surgery. Renal function (glomerular filtration rate [GFR], urinary protein-to-urinary creatinine ratio [UP:UC], and results of urinalysis and biochemical analysis of plasma), hemostatic variables (bleeding time, platelet aggregation, prothrombin time [PT], activated partial thromboplastin time [APTT], and platelet count), and Hct were assessed before and at various time points after surgery. RESULTS: Analysis of results for renal function tests, most of the hemostatic and plasma biochemical variables, and Hct did not reveal significant differences between treatment groups. Values for GFR, UP:UC, PT, APTT, and platelet aggregation were outside reference ranges in many dogs before surgery and during the first 6 hours after surgery. In most dogs, these trauma-induced pathologic changes returned to within reference ranges during the 4-day period after surgery. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen did not cause clinically relevant adverse effects in dogs anesthetized for fracture repair after 5 days of treatment, even when it was administered before surgery or given to patients with trauma-induced alterations in renal function or hemostasis. 相似文献
19.
Objective To perform a randomized, placebo‐controlled, masked clinical trial using a cross‐over design to determine the effect of oral diphenhydramine on aqueous tear production in normal dogs. Animals studied Seventeen dogs with normal ophthalmic examinations. Procedures Baseline tear production was established for each dog by performing Schirmer tear test I (STT I). Dogs received 20‐day treatment courses of both oral diphenhydramine and placebo solutions with a 10‐day washout period between treatment periods. Each dog was randomly assigned to receive diphenhydramine or placebo at the outset of the study. Measurements of STT I values were measured at regular intervals during the study and were conducted at the same time of day throughout the study to control for diurnal variations in tear production. The significance of the impact of diphenhydramine treatment on the quantity of aqueous tear production, as determine by STT results over time, was evaluated using regression analysis with appropriate transformation. Results Statistical comparisons at each measurement time, including baseline measurements between control and treatment groups, revealed no significant differences. Mean STT I levels also did not differ significantly at any measurement time compared to baseline for treatment or control groups. Conclusions Short‐term administration of oral diphenhydramine does not result in a significant decrease in aqueous tear production in normal dogs. 相似文献
20.
Flory AB Rassnick KM Balkman CE Kiselow MA Autio K Beaulieu BB Lewis LD 《American journal of veterinary research》2008,69(10):1316-1322
OBJECTIVE: To characterize oral bioavailability and pharmacokinetic disposition of etoposide when the IV formulation was administered orally to dogs. ANIMALS: 8 tumor-bearing dogs. PROCEDURES: An open-label, single-dose, 2-way crossover study was conducted. Dogs were randomly assigned to initially receive a single dose of etoposide (50 mg/m2) IV or PO. A second dose was administered via the alternate route 3 to 7 days later. Medications were administered before IV administration of etoposide to prevent hypersensitivity reactions. Oral administration of etoposide was prepared by reconstituting the parenteral formulation with 0.9% NaCl solution and further diluting the reconstituted mixture 1:1 with a sweetening agent. Plasma samples were obtained after both treatments. Etoposide concentrations were measured with a high-performance liquid chromatography assay, and plasma etoposide concentration-time profiles were analyzed by use of noncompartmental methods. RESULTS: 4 dogs had hypersensitivity reactions during IV administration of etoposide. No adverse effects were detected after oral administration. Plasma etoposide concentrations were undetectable in 2 dogs after oral administration. Oral administration of etoposide resulted in significantly lower values for the maximum plasma concentration and the area under the plasma etoposide concentration-versus-time curve, compared with results for IV administration. Oral bioavailability of etoposide was low (median, 13.4%) and highly variable among dogs (range, 5.7% to 57.3%). CONCLUSIONS AND CLINICAL RELEVANCE-Vehicle-related toxicosis can limit the IV administration of etoposide in dogs. The parenteral formulation of etoposide can be safely administered orally to dogs, but routine use was not supported because of low and variable oral bioavailability in this study. 相似文献