首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preemptive analgesia is an important part of surgical management, but some NSAIDs can adversely affect platelet function or renal or hepatic status. Tepoxalin is approved in the United States for control of pain and inflammation associated with arthritis and in Europe for relief of pain caused by musculoskeletal disorders. In this study, no significant effects on indices of hemostasis or renal or hepatic function were detected when a single preoperative oral dose of tepoxalin was administered to young healthy dogs undergoing anesthesia and surgery.  相似文献   

2.
A pharmacokinetic study was conducted to compare the oral bioavailability of tepoxalin and its pharmacologically active acid metabolite in fasted dogs and dogs fed either a low-fat or high-fat commercial diet. Using a cross-over design, six beagles were administered tepoxalin (10 mg/kg) intravenously (i.v.) and orally (p.o.) after being fed one of three diets (fasted, low-fat, or high-fat). Thereafter, blood samples were collected at frequent intervals, concentrations of tepoxalin and acid metabolite in plasma were determined by high performance liquid chromatography, and pharmacokinetic parameters were estimated. After i.v. dosing, the mean (+/-SD) half-life of elimination (t(1/2(beta))) was 2.45 +/- 1.47 h. After p.o. administration, plasma concentrations of acid metabolite were consistently higher than corresponding concentrations of the parent tepoxalin, indicating that tepoxalin is subject to a substantial first-pass effect. Mean (+/-SD) peak concentrations of tepoxalin were significantly higher after feeding of low-fat (1.08 +/- 0.37 microg/mL) and high-fat (1.19 +/- 0.29 microg/mL) diets than in fasted dogs (0.53 +/- 0.20 microg/mL), suggesting that feeding improves oral bioavailability.  相似文献   

3.
Analgesics given preoperatively have the potential to decrease the amount of inhalant anesthetics required intraoperatively (i.e., to decrease the minimum alveolar concentration, or MAC, for the inhalant). Tepoxalin is an NSAID approved for the treatment of arthritis in dogs in the United States and, hence, could be administered to patients undergoing anesthesia. In this study, administration of a single dose or a 10-day course of tepoxalin did not affect the MAC for isoflurane or sevoflurane.  相似文献   

4.
The thiamylal sparing effect of midazolam was studied in 30 healthy Beagle and mixed-breed dogs. Using a replicated Latin square design, all dogs were given placebo (saline solution) and 0.025, 0.05, 0.1, and 0.2 mg of midazolam/kg of body weight prior to IV administration of thiamylal sodium. The 0.1 and 0.2 mg/kg dosages significantly decreased the amount of thiamylal required to obtund swallowing reflex and easily achieve endotracheal intubation. Midazolam at 0.1 and 0.2 mg/kg reduced thiamylal requirement by 16.4% and 18.9%, respectively, whereas the 0.05 mg/kg dosage decreased thiamylal requirement by only 6.8%. The 0.2 mg/kg dosage did not further decrease thiamylal requirement beyond that achieved with the 0.1 mg/kg dosage of midazolam. This study demonstrates that the preanesthetic IV administration of midazolam reduces the thiamylal dose necessary to accomplish intubation. The optimal preanesthetic dosage (lowest dosage with significant effect) was 0.1 mg/kg.  相似文献   

5.
The objective of this study was to investigate renal function in clinically normal dogs receiving tepoxalin, a nonsteroidal inflammatory drug, either in association with or without an angiotensin-converting enzyme inhibitor (ACEI). Ten adult female Beagle dogs were used in the three phases of the study. The dogs were administered the drugs once daily for 7 days (experiment 1: placebo/tepoxalin/tepoxalin and benazepril; experiment 2: enalapril/tepoxalin and enalapril) or for 28 days (experiment 3: tepoxalin and benazepril together). Renal function was assessed by measurement of glomerular filtration rate (GFR) by renal scintigraphy [(renal uptake of 99mTc-diethylenetriaminepentacetic acid (DTPA)] and plasma clearance of 99mTc-DTPA. Compared with the placebo group, renal uptake and plasma clearance of 99mTc-DTPA were not significantly modified after a 7-day period of treatment with tepoxalin or enalapril alone, tepoxalin and benazepril or tepoxalin and enalapril together. No significant change was obtained in GFR after a 28-day period of dosing with tepoxalin and benazepril together. Therefore, it was concluded that tepoxalin did not alter renal function in healthy Beagle dogs receiving ACEI.  相似文献   

6.
7.
ObjectiveTo evaluate the possible renal and hepatic toxicity of tepoxalin in dogs exposed to hypotension during isoflurane anesthesia.Study designProspective, randomized experimental study.AnimalsTwenty adult mixed-breed dogs, weighing 18.8 ± 2.8 kg.MethodsThe animals received 10 mg kg?1 tepoxalin orally 2 hours before the anesthetic procedure (PRE; n = 6), or 30 minutes after anesthesia (POST; n = 6), along with a control group (CON; n = 8), which were only anesthetized. The PRE and POST groups also received the same dose of tepoxalin for 5 days post-procedure. All dogs were anesthetized with propofol and maintained with isoflurane and the end-tidal isoflurane (Fe’Iso) was increased until mean arterial pressure decreased to 50–60 mmHg. These pressures were maintained for 60 minutes. Heart rate, arterial pressures and Fe’Iso were recorded at 0, 10 and every 10 minutes up to 60 minutes of hypotension. Blood gases, pH, electrolytes and bleeding time were analyzed before and at 30 and 60 minutes of hypotension. Renal and hepatic changes were quantified by serum and urinary biochemistry and creatinine clearance.ResultsSerum concentrations of alanine amino transferase (ALT), alkaline phosphatase (ALP) and σ-glutamyl transferase (GGT), blood urea nitrogen (BUN) and creatinine (Cr), and urinary output, urinary Cr, Cr clearance, and GGT:Cr ratio remained stable throughout the evaluations. During the anesthetic procedure there were no important variations in the physiological parameters. No side effects were observed in any of the groups.Conclusions and clinical relevanceTepoxalin did not cause significant effects on renal function or cause hepatic injury in healthy dogs exposed to hypotension with isoflurane, when administered pre- or postanesthetic and continued for five consecutive days.  相似文献   

8.
9.

Objective

To determine the effect of fentanyl on the induction dose and minimum infusion rate of alfaxalone required to prevent movement in response to a noxious stimulus (MIRNM) in dogs.

Study design

Experimental crossover design.

Animals

A group of six healthy, adult, intact female mixed-breed dogs, weighing 19.7 ± 1.3 kg.

Methods

Dogs were randomly administered one of three treatments at weekly intervals: premedication with 0.9% saline (treatment A), fentanyl 5 μg kg–1 (treatment ALF) or fentanyl 10 μg kg–1 (treatment AHF), administered intravenously over 5 minutes. Anesthesia was induced 5 minutes later with incremental doses of alfaxalone to achieve intubation and was maintained for 90 minutes in A with alfaxalone (0.12 mg kg–1 minute–1), in ALF with alfaxalone (0.09 mg kg–1 minute–1) and fentanyl (0.1 μg kg–1 minute–1) and in AHF with alfaxalone (0.06 mg kg–1 minute–1) and fentanyl (0.2 μg kg–1 minute–1). The alfaxalone infusion was increased or decreased by 0.006 mg kg–1 minute–1 based on positive or negative response to antebrachium stimulation (50 V, 50 Hz, 10 ms). Data were analyzed using a mixed-model anova and presented as least squares means ± standard error.

Results

Alfaxalone induction doses were 3.50 ± 0.13 (A), 2.17 ± 0.10 (ALF) and 1.67 ± 0.10 mg kg–1 (AHF) and differed among treatments (p < 0.05). Alfaxalone MIRNM was 0.17 ± 0.01 (A), 0.10 ± 0.01 (ALF) and 0.07 ± 0.01 mg kg–1 minute–1 (AHF) and differed among treatments. ALF and AHF decreased the MIRNM by 44 ± 8% and 62 ± 5%, respectively (p < 0.05). Plasma alfaxalone concentrations at MIRNM were 5.82 ± 0.48 (A), 4.40 ± 0.34 (ALF) and 2.28 ± 0.09 μg mL–1 (AHF).

Conclusions and clinical relevance

Fentanyl, at the doses studied, significantly decreased the alfaxalone induction dose and MIRNM.  相似文献   

10.

Objective

To determine the effect of fentanyl on the induction dose of propofol and minimum infusion rate required to prevent movement in response to noxious stimulation (MIRNM) in dogs.

Study design

Crossover experimental design.

Animals

Six healthy, adult intact male Beagle dogs, mean ± standard deviation 12.6 ± 0.4 kg.

Methods

Dogs were administered 0.9% saline (treatment P), fentanyl (5 μg kg?1) (treatment PLDF) or fentanyl (10 μg kg?1) (treatment PHDF) intravenously over 5 minutes. Five minutes later, anesthesia was induced with propofol (2 mg kg?1, followed by 1 mg kg?1 every 15 seconds to achieve intubation) and maintained for 90 minutes by constant rate infusions (CRIs) of propofol alone or with fentanyl: P, propofol (0.5 mg kg?1 minute?1); PLDF, propofol (0.35 mg kg?1 minute?1) and fentanyl (0.1 μg kg?1 minute?1); PHDF, propofol (0.3 mg kg?1 minute?1) and fentanyl (0.2 μg kg?1 minute?1). Propofol CRI was increased or decreased based on the response to stimulation (50 V, 50 Hz, 10 mA), with 20 minutes between adjustments. Data were analyzed using a mixed-model anova and presented as mean ± standard error.

Results

ropofol induction doses were 6.16 ± 0.31, 3.67 ± 0.21 and 3.33 ± 0.42 mg kg?1 for P, PLDF and PHDF, respectively. Doses for PLDF and PHDF were significantly decreased from P (p < 0.05) but not different between treatments. Propofol MIRNM was 0.60 ± 0.04, 0.29 ± 0.02 and 0.22 ± 0.02 mg kg?1 minute?1 for P, PLDF and PHDF, respectively. MIRNM in PLDF and PHDF was significantly decreased from P. MIRNM in PLDF and PHDF were not different, but their respective percent decreases of 51 ± 3 and 63 ± 2% differed (p = 0.035).

Conclusions and clinical relevance

Fentanyl, at the doses studied, caused statistically significant and clinically important decreases in the propofol induction dose and MIRNM.  相似文献   

11.
12.
13.
Eighteen dogs undergoing ovariohysterectomy were premedicated with etodolac, butorphanol, or their combination. Various parameters, such as blood pressure, isoflurane requirements, behavioral pain scores, plasma cortisol concentration, plasma glucose concentration, and mucosal bleeding time, were assessed. The integrated plasma cortisol values were significantly lower in the etodolac and etodolac with butorphanol groups. Dogs receiving etodolac and butorphanol had the lowest behavioral pain scores from extubation until the end of monitoring. Isoflurane concentration over time (area under the curve), buccal mucosal bleeding time, and indices of renal function were not significantly different among the treatment groups.  相似文献   

14.
The pharmacokinetics of ketorolac (Toradol), a human non-narcotic, nonsteroidal anti-inflammatory drug (NSAID) of the pyrrolo-pyrrole group, was studied in six mixed breed dogs of varying ages (1-5 years). The study was performed using a randomized crossover design, with each dog initially assigned to one of two groups (intravenous (i.v.) or oral (p.o.)). Each group of three dogs received either the injectable or oral formulation of ketorolac tromethamine at 0.5 mg/kg. Serial blood samples were collected before and over 96 h following treatment. Samples were analysed by reverse phase HPLC. Individual ketorolac plasma concentration-time curves were initially evaluated by computerized curve stripping techniques followed by nonlinear least squares regression. Following i.v. administration mean (+/- SD) pharmacokinetic parameters were: elimination half-life (t1/2 beta) = 4.55 h, plasma clearance (Clp) = 1.25 (1.13) mL/kg/min, and volume of distribution at steady state (Vss) = 0.33 (0.10) L/kg. Mean (+/- SD) p.o. pharmacokinetic values were: t1/2 beta = 4.07 h, time to reach maximum concentration (tmax) = 51.2 (40.6) min, and p.o. bioavailability (F) = 100.9 (46.7)%. These results suggest that the pharmacodisposition characteristics of a clinically effective 0.5 mg/kg i.v. or p.o. single dose of ketorolac tromethamine administered to dogs is fairly similar to that observed in humans.  相似文献   

15.
Objective To compare three combinations of injectable anesthetics in miniature donkeys for quality of induction, recovery, muscle relaxation, cardiopulmonary changes during anesthesia and duration of recumbency. Design Prospective, randomized experimental study. Animals Six miniature donkeys (< 90 cm in height at the withers) weighing 92–127 kg were used. Materials and methods The drug combinations were: xylazine?butorphanol?ketamine (XBK), xylazine?butorphanol?tiletamine?zolazepam (XBT) and xylazine?propofol (XP). Each miniature donkey was anesthetized with each combination at 1‐week intervals in random order. Heart and respiratory rates, indirect blood pressure and temperature were measured before and at 5‐minute intervals during recumbency. Arterial blood samples were drawn for blood‐gas analysis before and at 5, 15 and 30 minutes of anesthesia when samples could be collected. Recumbency time to sternal and time to standing were recorded and a subjective evaluation of induction, muscle relaxation and recovery were made. Results Mean recumbency time ± SD was 14.7 ± 9.4, 33.8 ± 6.3 and 14.6 ± 1.9 minutes with XBK, XBT and XP, respectively. Mean time to standing ± SD was 28.4 ± 11.3, 43.7 ± 7.2 and 26.3 ± 2.9 minutes with XBK, XBT and XP, respectively. Heart and respiratory rates and blood pressures varied from baseline but were always within normal ranges. Hemoglobin saturation, pH and PaO2 tended to be lower with these doses of XBT and XP. Conclusions and clinical relevance Overall quality of anesthesia was poor with XBK. At the doses used this combination did not provide sufficient anesthesia compared with the combinations of XBT and XP, which appeared to provide acceptable anesthesia of short duration in miniature donkeys.  相似文献   

16.
ObjectiveTo determine in dogs the effects of medetomidine and butorphanol, alone and in combination, on the induction dose of alfaxalone and to describe the induction and intubation conditions.Study designProspective, randomized, blinded clinical trial.AnimalsEighty-five client-owned dogs (ASA 1 or 2).MethodsSubjects were block randomized to treatment group according to temperament. The treatment groups were: medetomidine 4 μg kg?1 (M), butorphanol 0.1 mg kg?1 (B), or a combination of both (MB), all administered intramuscularly. After 30 minutes, a sedation score was assigned, and alfaxalone 0.5 mg kg?1 was administered intravenously over 60 seconds by an observer who was unaware of treatment group. Tracheal intubation conditions were assessed and, if tracheal intubation was not possible after 20 seconds, further boluses of 0.2 mg kg?1 were given every 20 seconds until intubation was achieved. Induction dose and adverse events (sneezing, twitching, paddling, excitement, apnoea and cyanosis) were recorded; induction quality and intubation conditions were scored and recorded.ResultsThe mean dose of alfaxalone required for induction was similar for groups M and B: 1.2 ± 0.4 mg kg?1. The mean dose requirement for group MB (0.8 ± 0.3 mg kg?1) was lower than groups M and B (p < 0.0001). Induction dose was not influenced by temperament or level of sedation. Induction and intubation scores did not differ between treatment groups. Adverse events were noted in 16 dogs; there was no association with treatment group, temperament or level of sedation.Conclusions and clinical relevanceMedetomidine and butorphanol administered in combination reduce the anaesthetic induction dose of alfaxalone compared to either agent alone. This difference should be taken into account when using this combination of drugs in a clinical setting.  相似文献   

17.
OBJECTIVE: To evaluate sedative effects of IM administration of a low dose of romifidine in dogs. ANIMALS: 13 healthy adult Beagles. PROCEDURE: Physiologic saline solution (0.2 ml), 0.1 % romifidine (10, 20, or 40 microg/kg), or 10% xylazine (1 mg/kg) was given IM in a crossover study design. Heart rate, respiratory rate, rectal temperature, hemoglobin saturation, and scores for sedation, muscle relaxation, posture, auditory response, and positioning response were recorded before and at regular intervals for up to 240 minutes after drug administration. RESULTS: Scores for sedation, muscle relaxation, posture, auditory response, and positioning response increased in a dose-dependent manner after romifidine administration. Sedation induced by the highest dose of romifidine (40 microg/kg) was comparable to that induced by xylazine (1 mg/kg). Heart rate, respiratory rate, and rectal temperature decreased in a dose-dependent manner after romifidine administration, but hemoglobin saturation did not change. CONCLUSIONS AND CLINICAL IMPLICATIONS: Romifidine (10, 20, or 40 microg/kg, IM) is an effective sedative in dogs, but causes a decrease in heart rate, respiratory rate, and rectal temperature.  相似文献   

18.
Effect of oral administration of prednisolone on thyroid function in dogs   总被引:4,自引:0,他引:4  
To determine the effect of oral administration of prednisolone on thyroid function, 12 healthy Beagles were given 1.1 mg of prednisolone/kg of body weight every 12 hours for 22 days after 8 days of diagnostic testing of the dogs before treatment with prednisolone. Thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) response tests were performed before treatment (days 1 and 8 of the study) and during treatment (days 21 and 28 of the study). Blood samples were collected daily at 8 AM and 2 and 8 PM to rule out normal daily hormone fluctuations as the cause of a potential decrease in serum triiodothyronine (T3), thyroxine (T4), and free T4 (fT4) concentrations. Serum T3, T4, and fT4 concentrations before treatment and 1 day and 21 days after the first prednisolone dose were compared by analyses of variance. Post-TSH and -TRH serum T3 and T4 concentrations before and during treatment were compared, using the Student t test for paired data. Oral administration of prednisolone significantly (P less than 0.005) decreased serum T3, T4, and fT4 concentrations in the 8 AM and 2 and 8 PM samples obtained 1 day and 21 days after the first prednisolone dose. Serum T4 and fT4 concentrations in 8 AM and 2 PM samples were significantly (P less than 0.05) lower 21 days after the first prednisolone dose than they were at 1 day after the first dose. Before treatment, serum T4 concentration in the 2 PM samples was significantly (P less than 0.05) higher than serum T4 concentration in 8 AM and 8 PM samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
OBJECTIVE: To evaluate effect of alternate-day oral administration of prednisolone on endogenous plasma ACTH concentration and adrenocortical response to exogenous ACTH in dogs. ANIMALS: 12 Beagles. PROCEDURE: Dogs were allotted to 2 groups (group 1, 8 dogs treated with 1 mg of prednisolone/kg of body weight; group 2, 4 dogs given excipient only). During a 30-day period, blood samples were collected for determination of plasma ACTH and cortisol concentrations before, during, and after treatment with prednisolone. From day 7 to 23, prednisolone or excipient was given on alternate days. Sample collection (48-hour period with 6-hour intervals) was performed on days 1, 7, 15, 21, and 28; on other days, sample collection was performed at 24-hour intervals. Pre- and post-ACTH plasma cortisol concentrations were determined on days 3, 9, 17, 23, and 30. RESULTS: A significant difference was detected between treatment and time for group 1. Plasma ACTH concentrations significantly decreased for 18 to 24 hours after prednisolone treatment in group-1 dogs. At 24 to 48 hours, ACTH concentrations were numerically higher but not significantly different in group-1 dogs. Post-ACTH plasma cortisol concentration significantly decreased after 1 dose of prednisolone and became more profound during the treatment period. However, post-ACTH cortisol concentration returned to the reference range 1 week after prednisolone administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Single oral administration of 1 mg of prednisolone/kg significantly suppressed plasma ACTH concentration in dogs for 18 to 24 hours after treatment. Alternate-day treatment did not prevent suppression, as documented by the response to ACTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号