首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
小RNA深度测序鉴定昭通市烟草脉斑病病毒   总被引:1,自引:0,他引:1  
烟草脉斑病在云南昭通市的烟草上发生危害严重,为明确昭通市烟草脉斑病的病毒种类,本研究采集昭通市的4个烟草种植区症状表现为疑似烟草脉斑病的烟草样品,采用小RNA深度测序技术对不同来源的混合样品进行小RNA测序分析。结果显示混合样品中的病毒分别属于烟草花叶病毒属Tobamovirus、马铃薯Y病毒属Potyvirus和马铃薯卷叶病毒属Polerovirus。根据不同病毒属设计通用引物,分别对不同地区的烟草样品进行RT-PCR验证,结果表明,烟草样品中病毒种类有烟草花叶病毒、烟草脉带花叶病毒、烟草脉扭病毒和马铃薯Y病毒的PVYN、PVYN-Wi和PVYNTN株系。  相似文献   

2.
2017年调查福建福清地区马铃薯病毒病的发生情况,以明确该地区马铃薯主要病毒病原。共采集了46份疑似感染病毒的马铃薯植株,提取总RNA,利用RT-PCR技术进行分子检测,结果表明,福清地区危害马铃薯的病毒有马铃薯Y病毒Potato virus Y(PVY)、马铃薯卷叶病毒Potato leaf roll virus(PLRV)、马铃薯S病毒Potato virus S(PVS),检出率分别为56.52%、17.39%和10.87%,以PVY检出率最高,说明PVY是危害该地区马铃薯样品的主要病毒病原。通过病毒复合侵染进行分析,发现该地区存在病毒复合侵染马铃薯现象。研究结果可为福清地区马铃薯种薯的引进和病毒病害防治提供参考依据。  相似文献   

3.
为明确贵州黔西南烟草中辣椒脉斑驳病毒(chilli veinal mottle virus, ChiVMV)的遗传多样性和分子进化特征,本研究以2021—2022年采集自贵州省黔西南州兴义市的52份疑似感染ChiVMV的烟草样品为实验材料,利用马铃薯Y病毒属(Potyvirus)通用引物和ChiVMV特异性引物进行RT-PCR检测、克隆和测序,并结合GenBank中已公布的相关序列对分离获得的16个ChiVMV贵州烟草分离物进行基于外壳蛋白(coat protein,CP)CP基因的遗传多样性和分子进化分析。结果显示,所获得的ChiVMV贵州烟草分离物与GenBank中其他36个分离物CP基因的核苷酸一致性为84.79%~99.65%;基于ChiVMV CP基因的系统进化分析发现,52个不同来源的ChiVMV分离物在进化上可以聚为3个不同的分支,聚类结果具有明显的地理分布特征;遗传多样性和进化分析结果表明,各群体受到地理分布的影响而表现出较高的遗传多样性,各群体间的遗传分化显著且基因交流频率较低。研究结果为ChiVMV抗病品种的选育和该类病毒病的防治具有重要意义。  相似文献   

4.
甜菜花叶病毒(Beet mosaic virus,BtMV)属马铃薯Y病毒科、马铃薯Y病毒属,可经多种蚜虫以非持久性方式传播,病毒粒子为弯曲线状,核酸为单分子正义ssRNA。目前只有美国华盛顿分离物的全序列以及斯洛伐克和英国少数几个分离物3′端的部分序列被报道[1,2]。美国分离物全长9591nt,3′端具有PolyA尾,编码一个由3086个氨基酸组成的多聚蛋白,与其它Potyvirus病毒一样可切割成10个蛋白,从N到C端依次为P1、HC-Pro、P3、6K1、CI、6K2、NIa-Vpg、NIa-Pro、NIb和CP[2]。对于我国发生的BtMV,1981年Liu等[3]报道了发生于北京地区菠菜上的Bt…  相似文献   

5.
<正>0 引言马铃薯Y病毒(potato virus Y,PVY)是马铃薯Y病毒属(Potyvirus)的重要成员,可侵染170多种植物,其中茄科、藜科和豆科植物受害最为严重。1931年SMITH首次在马铃薯中发现PVY[1]。通过乙酰化组学在衣壳蛋白(coat protein, CP)中发现多个潜在乙酰化位点,但它们在PVY侵染中的作用不清楚。本研究通过突变解析了CP中潜在乙酰化位点在PVY侵染珊西烟的致病力变化,  相似文献   

6.
马铃薯病毒病是影响马铃薯产量和品质的主要因素之一,其症状表现为花叶、黄化和卷曲等。2019年4月-5月,在浙江省湖州、杭州、绍兴、宁波、金华、台州和丽水等7个地市的主要马铃薯产区采集了具有典型病毒病症状的马铃薯样品,采用转录组测序和RT-PCR验证的方法进行病毒检测,共筛查并验证出6种马铃薯病毒,包括马铃薯X病毒Potato virus X(PVX)、马铃薯Y病毒Potato virus Y(PVY)、马铃薯S病毒Potato virus S(PVS)、马铃薯H病毒Potato virus H(PVH)、马铃薯M病毒Potato virus M(PVM)以及马铃薯奥古巴花叶病毒Potato aucuba mosaic virus(PAMV)。检测结果表明,在调查的这7个地市中每个地市都具有2种以上的病毒发生,其中PVH作为一种新鉴定的麝香石竹潜隐病毒属成员在除宁波以外的各地区都有发生;此外杭州市、湖州市以及绍兴市均检测出了PAMV。对检测到的PVS、PVH、PVM和PAMV外壳蛋白(coat protein,CP)序列进行系统发育分析表明,这些病毒均存在地域差异性。本研究为浙江省马铃薯病毒的防控奠定了重要基础。  相似文献   

7.
正甘薯病毒2(Sweet potato virus 2,SPV2)是马铃薯Y病毒科(Potyviridae)马铃薯Y病毒属(Potyvirus)成员。SPV2也称为甘薯脉花叶病毒(ipomoea vein mosaic virus,IVMV)和甘薯Y病毒(sweet potato virus Y,SPVY)~[1],是甘薯上常见的病毒之一。SPV2病毒粒体为线条状,长度为850 nm,在细胞质中形成风轮状或卷轴状内含体~[2]。SPV2可由桃  相似文献   

8.
利用DAS-ELISA检测试剂盒检测昭通烟草脉斑病样品,结果表明存在马铃薯Y病毒O株系和马铃薯Y病毒N株系两个不同株系病毒。利用Sprimer和M4引物扩增、克隆、测序,得到长度为1 771 bp目的片段,该片段包含病毒的外壳蛋白基因序列、3′ UTR序列以及部分Nib基因序列;序列分析表明与湖南HN 2分离物(GenBank No. GQ200836)和美国NE 11分离物(GenBank No. DQ157180)核苷酸序列相似性均为98%,系统进化分析表明其具有较近的亲缘关系。  相似文献   

9.
马永林 《植物医生》2008,21(2):14-15
威宁县马铃薯种植面积8万hm2,年产量15亿kg,属西南地区马铃薯种薯基地之一,但因马铃薯长时间种植.感染X、Y病毒,导致品种退化,引起产量剧减.  相似文献   

10.
<正>芝麻是我国主要的油料作物,引起芝麻黄化花叶等症状的芝麻花叶病病原是马铃薯Y病毒属花生条纹病毒芝麻分离物(peanut stripe virus sesame isolate,PSt V-se)(杨书军等,1993;晏立英等,2009),且国外也研究发现芝麻花叶病病原是马铃薯Y病毒属的成员之一(Sreenivasulu et al.,1994;Pappu et al.,1997)。河南省作为芝麻主产区之一,引起当地芝麻花叶病的病原尚不清楚,本试验通过采集河南  相似文献   

11.
ABSTRACT A novel whitefly-transmitted member of the family Potyviridae was isolated from a squash plant (Cucurbita pepo) with vein yellowing symptoms in Florida. The virus, for which the name Squash vein yellowing virus (SqVYV) is proposed, has flexuous rod-shaped particles of approximately 840 nm in length. The experimental host range was limited to species in the family Cucurbitaceae, with the most dramatic symptoms observed in squash and watermelon, but excluded all tested species in the families Amaranthaceae, Apocynaceae, Asteraceae, Chenopodiaceae, Fabaceae, Malvaceae, and Solanaceae. The virus was transmitted by whiteflies (Bemisia tabaci) but was not transmitted by aphids (Myzus persicae). Infection by SqVYV induced inclusion bodies visible by electron and light microscopy that were characteristic of members of the family Potyviridae. Comparison of the SqVYV coat protein gene and protein sequences with those of recognized members of the family Potyviridae indicate that it is a novel member of the genus Ipomovirus. A limited survey revealed that SqVYV also was present in watermelon plants suffering from a vine decline and fruit rot recently observed in Florida and was sufficient to induce these symptoms in greenhouse-grown watermelon, suggesting that SqVYV is the likely cause of this disease.  相似文献   

12.
ABSTRACT The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5' leader and 149-nt 3'-untranslated region and is polyadenylated at the 3' end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5'-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3'). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus "Ipomovirus." In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.  相似文献   

13.
Host Range and Characterization of Sunflower mosaic virus   总被引:1,自引:0,他引:1  
ABSTRACT Sunflower mosaic is caused by a putative member of the family Potyviridae. Sunflower mosaic virus (SuMV) was characterized in terms of host range, physical and biological characteristics, and partial nucleotide and amino acid sequence. Cells infected with SuMV had cytoplasmic inclusion bodies typical of potyviruses. Of 74 genera tested, only species in Helianthus, Sanvitalia, and Zinnia, all Asteraceae, were systemic hosts. Commercial sunflower hybrids from the United States, Europe, and South Africa were all equally susceptible. The mean length of purified particles is approximately 723 nm. The virus was transmitted by Myzus persicae and Capitphorus elaegni, and also was seedborne in at least one sunflower cultivar. Indirect enzyme-linked immunosorbent assay tests with a broad-spectrum potyvirus monoclonal antibody were strongly positive. SuMV-specific polyclonal antisera recognized SuMV and, to a lesser extent, Tobacco etch virus (TEV). When tested against a panel of 31 potyvirus-differentiating monoclonal antibodies, SuMV was distinct from any potyvirus previously tested. SuMV shared four epitopes with TEV, but had a reaction profile more similar to Tulip breaking virus (TBV). SuMV did not possess epitopes unique only to TBV. The predicted coat protein had a molecular weight of 30.5 kDa. The 3' end of the virus genome was cloned and sequenced. Phylogenetic analysis of the coat protein amino acid sequence revealed that SuMV is a distinct species within the family Potyviridae, most closely related to TEV.  相似文献   

14.
Surveys to identify virus diseases affecting garlic ( Allium sativum ), onion ( Allium cepa ) and Persian leek ( Allium ampeloprasum var. persicum ) were conducted from 1999 to 2002. Surveys covered different regions of Iran (Tehran [different vegetable markets, farmer fields and cultivation areas], Noushahr, Chalous, Roudbar, Sari, Hamadan, Touyserkan, Ghazvin and Jiroft). A total of 2045 (1285 garlic, 525 onion and 230 leek) samples showing symptoms of virus infection were collected and tested by ELISA; and in some cases tests were also confirmed by immunoelectron microscopy (IEM) for the presence of Allium viruses. ELISA results showed that the following viruses were detected: Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV) (genus Potyvirus , family Potyviridae ), Garlic common latent virus (GarCLV), Shallot latent virus (SLV) (genus Carlavirus ), Garlic virus D (GarV-D), Garlic virus B (GarV-B) and Garlic virus C type (GarV-C) (genus Allexivirus ). None of the samples reacted with antibodies to Shallot yellow stripe virus (SYSV) genus Potyvirus , family Potyviridae ), Shallot virus X (ShVX) and Garlic virus A (GarV-A, genus Allexivirus ). GarCLV, SLV, GarV-D, GarV-B and GarV-C are reported for the first time from Allium crops in Iran.  相似文献   

15.
在吉林省7个主要甘薯种植区共采集85份甘薯叶片样品,利用小RNA深度测序技术对混合样品进行检测,经RT-PCR和测序验证,鉴定出样品中存在10种病毒,包括6种RNA病毒和4种DNA病毒。分别是马铃薯Y病毒科马铃薯Y病毒属的甘薯羽状斑驳病毒Sweet potato feathery mottle virus (SPFMV)、甘薯潜隐病毒Sweet potato latent virus (SPLV)、甘薯G病毒Sweet potato virus G (SPVG)、甘薯C病毒Sweet potato virus C (SPVC)、甘薯2号病毒Sweet potato virus 2 (SPV2);长线形病毒科毛形病毒属的甘薯褪绿矮化病毒Sweet potato chlorotic stunt virus (SPCSV);双生病毒科菜豆金色花叶病毒属的甘薯曲叶病毒Sweet potato leaf curl virus(SPLCV);玉米线条病毒属的甘薯无症状1号病毒Sweet potato symptomless virus 1 (SPSMV1);花椰菜花叶病毒科杆状DNA病毒属的甘薯杆状DNA病毒B Sweet potato badnavirus B (SPBV-B)和甘薯隐症病毒Sweet potato pakakuy virus (SPPV)。  相似文献   

16.
A disease of borage ( Borago officinalis ) in Spain, characterized by severe mosaic and deformation of the leaves, was shown to be caused by a potyvirus. The borage-infecting potyvirus was characterized biologically by the symptoms induced in 23 indicator species and was shown to be transmitted experimentally by the aphid Myzus persicae in a non-persistent manner. In order to classify the borage-infecting potyvirus we have cloned and sequenced the entire coat protein gene and 3' non-coding region of the viral RNA. By comparing this nucleotide sequence with those of other members of the Potyviridae , we can identify the Spanish borage-infecting potyvirus as an isolate of clover yellow vein virus (CYVV), a virus so far only known to cause important diseases in forage legumes. This is the first record of CYVV in Spain and of CYVV infecting a natural host of the Boraginaceae.  相似文献   

17.
Journal of Plant Diseases and Protection - Plum pox virus (PPV) is a plant virus (genus Potyvirus, family Potyviridae) infecting stone fruit trees. Since the first report from Bulgaria in 1917, PPV...  相似文献   

18.
19.
In Brazil plants of Pfaffia glomerata with mosaic symptoms were found to be infected with a previously undescribed potyvirus, Pfaffia mosaic virus (PfMV). Virus particles were long and flexuous, c.  10 × 700–800 nm, and cylindrical inclusions typical of potyviruses were present in cells of infected tissue. Partial host-range studies revealed that in addition to P. glomerata , PfMV infected only Chenopodium amaranticolor and Chenopodium quinoa . It was efficiently transmitted by the aphids Aphis gossypii and Myzus persicae . Polyclonal antiserum produced against the PfMV coat protein (CP) reacted with Potato virus Y (PVY), but not with four other potyviruses in PTA-ELISA. The similarity of the nucleotide sequence of the PfMV coat-protein gene ( CP ) varied from 7 to 76% when compared with other members of the family Potyviridae . Similarity of the 3' NTR sequence varied from 4 to 23%. In both cases the highest similarity was with PVY. These data indicate that PfMV is a new species in the genus Potyvirus .  相似文献   

20.
Characterization of a new potyvirus isolated from peanut (Arachis hypogaea)   总被引:1,自引:0,他引:1  
During a survey of viruses of peanuts in South Africa a mechanically transmissible virus was isolated from a plant exhibiting chlorotic ringspots and blotches on the leaves. Typical potyvirus-like flexuous particles were detected by electron microscope examination. Pinwheel-shaped and laminated inclusions in ultrathin sections, reaction with a monoclonal antibody directed to a potyvirus common epitope, a single 33 kDa coat protein and aphid transmission using Myzus persicae all confirmed that the virus was a subdivision II member of the Potyviridae. Host range studies suggested that the virus was none of the previously reported potyviruses of peanuts or of subdivision II potyviruses. The serological relationships of the virus were studied using a range of 17 antisera to potyviruses in ELISA and immunosorbent electron microscopy (ISEM). The isolate reacted weakly with antisera to plum pox virus and bean yellow mosaic virus in ISEM only. Nucleotide sequence of a 624 bp DNA product was obtained following immuno-capture with a potyvirus common epitope antiserum, cDNA synthesis and PCR amplification with potyvirus specific primers which amplify the 3' untranslated region and a part of the coat protein gene. The sequence was only distantly related to a number of potyviruses, whether amino acid or nucleotide sequences were used for comparisons. It is proposed that the virus be named peanut chlorotic blotch virus and be accepted as a new member of the genus Potyvirus in the family Potyviridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号