首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of artificial precipitation with different pH levels on soil chemical properties and element flux were studied in a lysimeter experiment. Cambic Arenosol (Typic Udipsamment) in monolith lysimeters was treated for 6 1/2 yr with 125 mm yr?1 artificial rain in addition to natural precipitation. Artificial acid rain was produced from groundwater with H2SO4 added. pH levels of 6.1, 4 and 3 were used. ‘Rain’ acidity was buffered, mainly due to cation exchange with Ca2+ and Mg2+, which were increasingly leached due to the acid input. The H+ retention was not accompanied by a similar increase in the output of Al ions, but a slight increase in the leaching of Al ions was observed in the most acidic treatment. The net flux of SO4 2? from the lysimeters increased with increasing input of H2SO4, but in the most acidified lysimeters significant sorption of SO4 2? was observed. The sorption was, however, most likely a concentration effect. The ‘long-term’ acidification effects on soil were mainly seen in the upper O and Ah-horizons, where an impoverishment of exchangeable Ca2+ and Mg2+ was observed. An increased proportion of Al ions on exchange sites in the organic layer was observed in the pH 3-treated soil. By means of budget calculations the annual release of base cations due to weathering was estimated to be between 33 and 77 mmolc m?2.  相似文献   

2.
Ion leaching in 3 sandy spruce forest soils of different origin and pH was investigated in the laboratory. Zero-tension lysimeters containing undisturbed soil columns of varying soil depth were subjected to H2SO4 loadings for a period of 9 weeks. The analysis of the resulting leachate supports the hypothesis that Al-sulphate minerals may form in acidic soils when exposed to acid (H2SO4) deposition. In the B horizon of a glaciofluvial sandy soil (pH 4.2), both H+ and sulphate ions were retained to maintain 2pH + PSO4 = 11.9 in the leachate solutions. This relation between H+ and sulphate activity may be due to an adsorption mechanism or a precipitation mechanism. The precipitation mechanism is favored by the good fit of leachate composition to the conditions for jurbanite [AlOHSO4] formation from gibbsite [Al(OH)3]. In the B horizon of a sandy till at pH 3.7, the Al in soil solution (0.5 mmol L?1) was leached with sulphate. As the sulphate load was increased, some sulphate was retained. This may also be due to the dissolution and precipitation of an Al-sulphate mineral. The ion activity products of leachate solutions from the B horizon of this soil were close to the pKs reported for jurbanite. The conditions for the possible existence and/or formation of Al-sulphate minerals in acidic soils are discussed.  相似文献   

3.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

4.
The effects of artificial rain of various acidities were studied in a lysimeter experiment. Lysimeters, 29 cm in diameter, and 40 cm deep contained a Gleyed Dystric Brunisol. Natural structure, stratification and original vegetation were maintained. Artificial rain was produced from groundwater with “high” concentrations of neutral salts and from rainwater with lower concentrations. pH levels of 6, 4, 3 and 2 were established by adding H2SO4. Effects of dilution with given amounts of acid were examined by comparing the effects of 50 mm “rain” month?1 of pH 3 and pH 2 with 500 mm “rain” month?1 of pH 4 and pH 3, respectively. The study continued for 5 yr. Totals of 1250 or 12500 mm “rain” were applied in addition to a natural input of 2773 mm. Increased input of SO4 2? increased the output of SO4 2? but, as concentration increased, sorption of SO4 2? in the soil also increased. Concentrations of base cations in the leachate increased parallel to the output of SO4 2?. However, significant effects on leaching of base cations and on the content of exchangeable cations in the soil, was only found in the pH 2 treatment with 1250 mm of “rain” and in the pH 4 and pH 3 treatment with 12500 mm of “rain”.  相似文献   

5.
Rain water at two forested sites in Guangzhou (south China) show high concentrations of SO4 2?, NO3 ? and Ca2+ and display a remarkable seasonal variation, with acid rain being more important during the spring and summer than during the autumn and winter. The amount of acid rain represents about 95% of total precipitation. The sources of pollutants from which acid rain developed includes both locally derived and long-middle distance transferred atmosphere pollutants. The seasonal variation in precipitation chemistry was largely related to the increasing neutralizing capacity of base cations in rainwater in winter. Soil acidification is highlighted by high H+ and Al3+ concentrations in soil solutions. The variation in elemental concentration in soil solution was related to nitrification (H+, NH4 + and NO3 ?) and cation exchange reaction (H+, Al3+) in soil. The negative effect of soil acidification is partly dampened by substantial deposition of base cations (Ca2+, Mg2+ and K+) in this area.  相似文献   

6.
Three years of N application to a Cambic arenosol (Typic Udorthent) in two lysimeter series, one with and one without young saplings of Pinus sylvestris L. have produced significant changes in soil solution and leachate chemistry. An application of 30 kg N/ha*yr?1 significantly increased NO3 ? leaching from the soil. This N load was also sufficient to significantly increase the mobility of the phyto-toxic elements Al3+ and Mn2+, likewise to increase leaching of the important plant nutrients Ca2+, Mg2+ and K+. At a N load of 90 kg N/ha*yr?1 significant increase in NH4 + leaching was observed, but total leaching of NH4 + was still very low compared to NO3 ? leaching. No significant treatment effects were found for SO4 2?, Fe2+ and Cl? in the leachate. Trees grown in the lysimeters buffered the acidifying effect of N application and increased the leachate pH by 0.2 pH units compared to lysimeters without trees.  相似文献   

7.
It is proposed that the value of ([SO4 ??] - [Ca++ + Mg++]) in precipitation is a suitable way to describe the acidifying potential (AP) of the wet desposition. In eastern North America, the AP of precipitation varies from 20 to 85% of the total sulphate, the remainder of the sulphate being neutralized H2SO4, sulphate from salts in dust or from sea salt. The AP ranges from 20 to 80% of the H+ in the wet deposition. The rest of the H+ is contributed by the net effect of N compounds. Ammonium and nitrate ions from ammonia and NOXemissions do not represent a net acidic loading to the terrestrial ecosystem if they are taken up by vegetation. However, when N leaches from watersheds in the form nitrate, it constitutes an acidifying demand on the ecosystem. Therefore, the overall net acidifying potential (NAP) applied to the terrestrial ecosystem is defined by the value of ([SO4 ??] - [Ca++ + Mg++]) in precipitation plus [NO3 ??] in runoff from the watershed.  相似文献   

8.
The changes in ionic contents were studied in acidic precipitation samples collected for precipitation events in Taipei, which is near the sea. The storage cases under investigation include filtration, refrigeration, and light. Thus the experimental design leads all precipitation samples collected in the same rain event stored under different conditions. They were then analyzed six times successively within two months to provide the information containing potential ionic composition change. The measured constituents are H+, K+, Na+, Ca2+, Mg2+, NH4 +, NO3 ?, SO4 2?, and Cl?. The comparison of measured ionic concentrations corresponding to different storage methods yield no significant difference. The increases of NO3 ? and decreases of NH4 + with time were observed to be of similar magnitude, while the variation of pH values is significant. The presented study indicated the important role played by sample storage in determining the ionic composition of precipitation samples.  相似文献   

9.
Theory and experimental results have shown that neutral salts in the precipitation or supplied to the ground by other means reduce the acidification of soils by acid precipitation. This salt effect is caused by the cation exchange occurring after the entry of the rain water into the soil.The acid components of precipitation consist of H2SO4, HNO3 and HCl and of NH4+ after nitrification in the soil. The magnitude of the salt effect depends on the relative bonding energy of H3O+ and of Ca2+, Mg2+, Na+, K+, NH4+ in the soil as well as on the concentrations of H3O+ and the above cations in the precipitation. The salt effect may be considerable in very acid soils. It decreases with rising pH to become very small or negligible in neutral soils, chiefly due to the increasing bonding energy of H3O+ in this direction.The adverse effect of acid precipitation, therefore, is likely to be less in very acid soils, such as podsols, than in slightly acid and neutral soils with low buffering capacity against pH change. Soil texture and calcite content are very important factors in this respect as fine material and calcite increase the buffering.  相似文献   

10.
We evaluated the element budgets in a forested watershed in Jiulianshan, southern China. The element input in bulk precipitation was characterized by high depositions of H+, NH4 +, Ca2+, and SO4 2?, i.e., 400, 351, 299, and 876 eq/ha/yr, respectively. The outputs of H+, NH4 +, and SO4 2? from the watershed were very low, while those of Ca2+ and Mg2+ were high, 712 and 960 eq/ha/yr, respectively. The element budgets suggested that i) the net retentions of H+, NH4 +, and SO4 2? in this watershed were high, and ii) the net release of Mg2+ from this watershed was high mainly due to weathering. The net release of Ca2+ was not so high because of the high atmospheric deposition, while atmospheric deposition of Mg2+ was not so high (130 eq/ha/yr). Decrease of acid neutralizing capacity in the soil, i.e., net soil acidification, was caused mainly by the net release of Mg2+. Moreover, the net retention of SO4 2? also contributed to soil acidification.  相似文献   

11.
In recent years, acid rain has been a social problem all over the world. In Japan, it is also a big problem especially in the metropolitan area. Then, we have measured major ions such as H+, Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO3 ?, and SO4 2? in precipitation and dry deposition samples which had been collected at 9 sampling sites at Hiyoshi, Mita, Kashiwa, Shiki, Fujisawa, Yokosuka, Mitaka, Hachiouji, and Ashikaga in Tokyo Metropolitan area for 10 years since 1990. The average pH of precipitation in their sites was 4.56 (n=1906). As the results of multiple regression analysis showed that pH of precipitation was determined by 5 ions such as NH4 +, nssCa2+(non sea salt calcium), nssCl?(non sea salt chloride), NO3 ?, nssSO4 2?(non sea salt sulfate) in the most of the sampling sites. Therefore, it is very important to investigate the behavior of these ions to understand the acidification of rain in Tokyo Metropolitan area. In this study, a long term trend of each ion concentration in precipitation and wet deposition was also investigated the base on the data we had observed at 7 sites for 10 years by the statistical method.  相似文献   

12.
A simple method is presented and used to estimate the portions of SO inf4 sup2? and NO inf? sup3 that contribute to the strong acidity in weekly precipitation samples collected at three NADP sites in the eastern United States. The method assumes that, in general, the difference between SO inf4 sup2? and NH inf+ sup4 represents acidic sulfate and the difference between NO inf? sup3 and soil-derived materials (the sum of Ca2+, Mg2+, and K+) represents acidic nitrate. Acidic sulfate and nitrate are considered to be the predominant source of H+ (determined from laboratory pH) in the weekly precipitation samples. Most of the acidity for all three sites was attributed to acidic sulfate. The highest fraction of acidic SO inf4 sup2? to H+ wet deposition values was for the east-central Tennessee site (0.95) and the northeastern Illinois site (0.90), and the lowest fraction occurred at the central Pennsylvania site (0.75). The Tennessee site had the greatest acidic fraction of sulfate (0.84) and the Pennsylvania site had the greatest acidic fraction of nitrate (0.59).  相似文献   

13.
A study was conducted to compare soil leachate chemistry and determine sample size requirements for tension vs pan (zero-tension) lysimeters. Analyses were performed on an annual and seasonal basis for one year of data collected at Pea Vine Hill, a forested site in southwestern Pennsylvania. On an annual basis, SO4 ?2, Ca+2, Mg+2, Mn+2, K+ and specific conductance were significantly higher in tension lysimeter samples but no chemical species were significantly higher in pan lysimeters. Seasonal comparisons indicated chemical differences between lysimeter types were variable with more significant deviations present during wet periods. Nearly all significant seasonal differences were comprised of higher concentrations in tension compared to pan lysimeters. Disparities in leachate chemistry between lysimeter types were ascribed to different sources of water collected by the instruments especially during wet periods. Sample size requirements were calculated for two biweekly periods for each lysimeter type at three confidence levels. Based upon calculated sample demands, pan lysimeter soil leachate chemistry could be characterized with fewer samples than tension lysimeters. Less than .30 samples were generally necessary for pan B-horizon lysimeters at the 70% confidence level. Sample requirements were usually unreasonable at higher confidence levels.  相似文献   

14.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

15.
The cation content of droplets collected from Phaseolus vulgaris (pinto bean) leaf surfaces during misting was more strongly influenced by mist pH (2.5, 4.0, or deionized water) than by source of acidity (HCI or H2SO4 + HNO3). Concentrations of Ca2+, Mg2+, and K+ were highest in droplets from leaves treated with the pH 2.5 mists, but there were often no differences between the pH 4.0 and deionized water treatments. Cation content and pH of droplets from leaves treated with pH 2.5 mists increased across the three days of treatment, while those from leaves treated with less acidic mists decreased or did not change across the days of treatment. Source of acidity often affected foliar concentrations of Mg2+, K+, and Na+, but in inconsistent directions, and foliar concentrations of Mg2+ and K+ were unaffected by mist pH. Foliar Ca 2+ concentrations were often highest in leaves treated with pH 2.5 mists, in contrast to expectation, perhaps because of effects of acidic mist on foliar carbohydrate status. Despite the large efflux of cations from leaves treated with pH 2.5 mists, foliar cation concentrations in nonmisted foliage were sometimes lower than in misted foliage (Ca2+), but were higher in other cases (Na+) or indistinguishable in still others (K?). While exposure of plants to highly acidic mists appeared to cause accelerated efflux of foliar cations, effects on foliar chemistry are probably dependent on soil nutrient status and on other aspects of plant vigor.  相似文献   

16.
A total of 51 lakes in southern Quebec, Canada, were sampled between 1985 and 1993 to study changes in water chemistry following reductions in SO2 emissions (main precursor of acid precipitation). Time series analysis of precipitation chemistry revealed significant reductions in concentrations and deposition of SO4 2- from 1981 to 1992 in southern Quebec as well as reductions in concentrations and deposition of base cations (Ca2+, Mg2+), NO3 - and H+ in the western section of the study area. Reductions in atmospheric inputs of SO4 2- have resulted in decreased lakewater SO4 2- concentrations in the majority of the lakes in our study, although only a small fraction (9 of 37 lakes used in the temporal analysis) have improved significantly in terms of acidity status (pH, acid neutralizing capacity – ANC). The main response of the lakes to decreased SO4 2- is a decrease in base cations (Ca2++Mg2+), which was observed in 17 of 37 lakes. Seventeen lakes also showed significant increases in dissolved organic carbon (DOC) over the period of study. The resulting increases in organic acidity as well as the decrease in base cations could both play a role in delaying the recovery of our lakes.  相似文献   

17.
Precipitation chemistry at sinhagad-a hill station in India   总被引:1,自引:0,他引:1  
The chemistry of precipitation in remote sites such as mountain tops is of interest in the study of atmospheric pollution and acid rain. The chemical composition measured at mountain site which is away from industrial and urban areas is useful as a reference level and it allows to determine the extent of anthropogenic contamination. Hence, rain water samples were collected at Sinhagad (18°21N, 73°45E, 1450 m asl during the monsoon season (June-September) of 1992 and were analysed for major ions. The precipitation samples collected at Sinhagad were alkaline in nature and pH values ranged between 5.9 to 6.76. The ionic composition was dominated by soil dust The concentration of Ca2+ was highest among all the ions. The concentrations of excess SO3 2– and NO4 were small (23.8 and 15.2 eq l–1 respectively) compared to the values of polluted regions in India. The correlation coefficient between the ions and pH values was calculated and it was found to be maximum in case of Ca2+. Precipitation samples collected at Sinhagad were alkaline owing to higher concentration of Ca2+ and lower levels of acidic pollutants (SO4 2– and NO3 ).  相似文献   

18.
This study was carried out to evaluate acid depositions and to understand their effect. Wet precipitation has been collected at twenty-four sites in Korea for one year of 1999. The ion concentrations such as H+, Na+, K+, Mg2+, NH4 +, Ca2+, Cl?, NO3 ? and SO4 2? were chemically analyzed and determined. Precipitation had wide range of pH(3.5~8.5), and volume-weighted average was 5.2. The contribution amounts of Cl?, SO4 2? and NO3 ? in anion were shown to be 54%, 32%, and 14%, respectively and those of Na+ and NH4 + in cation were 32% and 25%. The ratios of Cl? and Mg2+ to Na+ in precipitation were similar to those of seawater, which imply that great amount of Cl? and Mg2+ in precipitation could be originated from seawater. The concentration of H+ is little related with SO4 2?, NO3 ? and Cl? ions, whereas nss?SO4 2? and NO3 ? are highly correlated with NH4 +, which could suggest that great amount of SO4 2? and NO3 ? exist in the form of ammonium associated salt. The annual wet deposition amounts (g m?2year?1) of SO4 2?, NO3 ?, Cl?, H+, NH4 +, Na+, K+, Ca2+ and Mg2+ were estimated as 0.88~4.89, 0.49~4.37, 0.30~9.80, 0.001~0.031, 0.06~2.15, 0.27~4.27, 0.10~3.81, 0.23~1.59 and 0.03~0.63.  相似文献   

19.
Over the last several decades rain in the Northeastern United States has become more acidic presumably as a result of anthropogenic inputs of SOx and NOx to the atmosphere and their conversion to H2SO4 and HNO3. Present experimental results suggest that acidic precipitation would initially affect organisms on leaf surfaces and epidermal cells of leaves of higher plants. More internal cell layers would be affected with increasing duration or frequency of exposure. Differences in responses of plant foliage among plant species to acidic precipitation appear to be due to the degree of leaf wetting and differences in responses of leaf cells to low pH rain. Moreover, within the same plant, particular structures or cell types may be more sensitive than others. If the United States is to utilize coal reserves for electric power generation that might increase rainfall acidity in the future, an assessment of the impact that acidic rain might have on terrestrial vegetation is necessary. In one experiment, field-grown soybeans were exposed to short duration rainfalls of either pH 4.0, 3.1, 2.7, or 2.3 to provide inputs of 50, 397, 998, or 2506 μeq of H+, respectively, above ambient levels throughout the growing season. Control plots received only ambient rainfalls. These additional H+ decreased seed yield, 2.6, 6.5, 11.4, and 9.5%, respectively. A treatment response function determined between H+ treatments and seed yield wasy=21.06?1.01 logx had a correlation coefficient of ?0.90. Researchers must design additional experiments with adequate experimental controls to assess the impact that acidic rain, at the present pH levels of 3.0 to 4.0 or at anticipated worst-case levels, that could occur if the acidity of rain should increase. Only a holistic view of the impacts that acid precipitation may have on vegetation will enable optimal energy and environmental policy decisions to be made.  相似文献   

20.
A humic lake of pH 5.6 was acidified with H2SO4 to pH 4.1. Measurements of total and hollow-fiber ultrafiltered samples were made after three different times of storage, before and after the acid treatment. The nominal molecular weight cutoff of the hollow-fiber membrane was 10 kDalton. Assuming a linear molecular weight distribution of the organic complexes present in solution, the average organic molecule had an average molecular weight of 12.8?08 kDalton (n=6). Not only Ca2+ and Mg2+, but also detectable amounts of Na+ and K+ was found to be present on high molecular weight forms. No significant change in the molecular weight distribution of these elements were observed after the pH decrease. Changes in the molecular weight distribution after the acid treatment were only observed for Fe and Al. Significant amounts of SO4 2? were present on high molecular weight forms. A small, but significant increase in the relative amounts of SO4 2? present on high molecular weight forms was observed after the pH lowering. Kinetic constraints were demonstrated for dissolution of Al and Fe. To some extent, kinetic constraints in the equilibrium distribution of cation/anion exchange reactions of Al, Fe, and SO4 2? were also observed. After the acid treatment, the cation exchange capacity (CEC) of the organic pool present was estimated to be at least 18.2±1.4 (n=3) μeq of positive charges per mg C, probably because the negative sites on the organic pool are either not totally protonated or occupied by other cations at pH 4.09. This CEC is of the same order as industrially made cation exchange resins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号