首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An eulerian long-range transport model for the calculation of concentrations of SO2, SO4, NO x , and NO3 and wet and dry depositions of SO x (sum of SO2 and SO4) and NO y (sum of NO, NO2 and NO3) over Europe is presented. The model is developed in such a way that only routinely available, analyzed or prognostic meteorological fields are required as input data. In this way it is possible to obtain a forecast of the air quality during smog episodes. For evaluation of smog episodes the model provides a way to estimate the contributions of different sources and the effect of emission scenarios. The model has been evaluated for four winter and three summer episodes. The modeled concentrations of SO2 and SO, are in agreement with the available measurements. A less good agreement is found for NO2 and NO x (sum of NO and NO2) concentrations. For these components the model tends to underpredict the measured values.  相似文献   

2.
The characteristics of transport and transformation of SO2, NOx and O3 in northeast Asia have been investigated by using a comprehensive regional air quality model (RAQM) driven by a meteorological model MM5. A study period of 1-15 March 2002 has been selected due to the availability of intense observation of chemical species for both ground and upper levels. Model results have been compared against observational data to provide insights into the strength and weakness of the model’s ability and the evolutionary features of chemical species. Validation shows a good skill of this model system in reproducing most of the key features in long-range transport, but apparent bias still remains due to a series of uncertainties from either emission estimates, prescribed parameters, or inherent model limitations. In general, this model shows a better skill for SO2 and O3 than for NOx. Large discrepancy occurs between the observed and calculated NOx concentration at higher levels, with the model results being much lower. A series of sensitivity tests have been conducted to investigate the potential affecting factors and it is found that the inaccuracy or incompleteness in currently used emission inventories could be a most likely cause for such discrepancy. Long-range transport from Asian continent to the western Pacific is pronounced in springtime. Substantially high concentrations of SO2 and NOx in or above the boundary layer (0.5~3.0 km) over the Yellow Sea suggest an important pathway for long-range transport in northeast Asia.  相似文献   

3.
Regional oxidant distributions produced under various atmospheric conditions and emission scenarios are investigated using the Regional Acid Deposition Model (RADM). RADM is a complex, evolving three-dimensional Eulerian model that describes the chemistry, transport and deposition of tropospheric trace species including SO2, sulfate, NO x and volatile organic compounds as well as O3, other major oxidants and acids. The model calculates the short-term temporal evolution of atmospheric trace gas concentrations and their deposition on the regional scale. This study is focused on oxidant production in the eastern United States and southeastern Canada. The influence of atmospheric conditions is explored by comparing three characteristic winter, summer and spring/fall cases. Base-case 1985 emissions of SO x , NO x , volatile organic compounds (VOCs), NH3 and CO are specified using the comprehensive pollutant emissions inventory developed as part of the National Acid Precipitation Assessment Program (NAPAP). The perturbed case, which represents projected anthropogenic emission changes for 2010, indicates changes in daily total 80 km grid average NO x emissions ranging from increases of 75% to decreases of 45% and VOC emission changes ranging from increases of 65% to decreases of 20%. The largest NO x emission changes occur in the northeast, and the largest VOC changes occur in the Gulf Coast area. Ground level grid average midday O3 concentrations for the 1985 emission cases are highest (on the order of 70 to 100 ppb) in the New York City and Houston metropolitan areas for the summer and spring cases; the summer case also indicates relatively high grid average O3 concentrations of greater than 80 ppb in the southeast. Winter case values are much lower than summer O3 values throughout the region, with highs of 40 to 50 ppb occurring in the southeast and the Great Lakes area. Changes in NO x and other emissions under the complex 2010 emissions scenario for the summer case result in maximum O3 concentration reductions of 10% in the Houston area and increases in O3 of a few percent in some rural areas of the southeast. This study underscores the need for more comprehensive assessment of the complex relationships among regional emission changes, oxidant production and atmospheric conditions.  相似文献   

4.
Kentucky bluegrass (Poa pratensis L.) plants, cultivars Cheri, Merion and Touchdown were grown at complete nutrition or with low S or low N. Plants were exposed to 10 ppm (v/v) O3 for 6 h d?i, 15 pphm SO2 continuously, 15 pphm NO2 continuously, or their mixture at these concentrations for 10 days. The severity of injury was much increased by misting with deionized water for 5 min twice daily, especially with SO2 and NO2 single gas exposures. The misting did not have consistent effects on total S, total N, leaf area or fresh weight. Exposure to O3 decreased leaf area without affecting S or N content, while SO2 usually increased total S and, in some cases, increased total N. Exposure to NO2 increased total N without affecting total S, and the mixture increased both total S and total N. Low S or low N usually enhanced the effect of SO2 or NO2, respectively. Leaf area and fresh weight were not as responsive to the treatments as total S and total N. Rainfall outdoors may be a major meteorological factor affecting plant injury response to gaseous pollutants.  相似文献   

5.
Aphids are frequently found on conifers, but mass outbreaks are seldom reported. On trees stressed by air pollutants the natural resistance can be broken and insect attack combined with pollution stress may promote plant damages. To evaluate effects of air pollution on conifer aphids Scots pine and Norway spruce seedlings have been exposed to gaseous pollutants (O3, SO2 and NO2) in growth chambers. The studied aphid species were Cinara pilicornis Hartig on Norway spruce, C. pinea (Mordv.) and Schizolachnus pineti Fabr. on Scots pine in SO2 fumigations and S. pineti in O3 and NO2 fumigations. C. pilicornis nymphs had peaked dose response to SO2 concentration. Both the first and third instar larvae of C. pilicornis showed highest mean relative growth rate (MRGR) at 100 ppb SO2 concentration. MRGR of C. pinea peaked at 50 and 150 ppb SO2 The response of S. pineti was more inconsistent During fumigation the peak MRGR of S. pineti was at 100 ppb and after exposure at 50 ppb SO2. MRGR of S. pineti nymphs was not significantly affected during fumigation or after the end of fumigation experiment by 100 ppb O3 or 100 ppb NO2 or the mixtures. The results suggest that SO2 affects more distinctively on aphid performance on conifers than O3 or NO2. Especially stem-feeding aphids on spruce can exploit physiological disturbance of host plant under pollution stress.  相似文献   

6.
An overview of the role of NO x in the formation of rural O3, regional transport and its potential impact on urban air quality is presented. An analysis of a specific O3 excursion in southeast Michigan (8-2-90) is performed based on a combined urban and regional-scale model. The regional component of the model represents transport and photochemistry from sources as far away as Texas. Results suggest that rural O3 and regional transport sensitive to NO x emissions and relatively insensitive to changes in volatile organic carbon (VOC) emissions. This differs from the situation in urban areas, where O3 is sensitive to both NO x and VOC. Regional transport and upwind NO x emissions have a significant impact on peak O3 in Detroit. Implications for urban and regional-scale abatement strategies are discussed.  相似文献   

7.
Casuarina cunninghamiana and Eucalyptus camadulensis (Egyptian var.) plants were exposed to 0.20 and 0.40 μL L?1 O3, SO2 or NO2 for 6 hr daily for 10 days. Eucalyptus plants were very sensitive to SO2 and NO2 and less sensitive to O3. Casuarina plants were insensitive to the 3 gases. The rate of sorption of the 3 gases was estimated over a 10 day exposure to 0.20 μL L?1 pollutant concentration singly and in a 3-gas mixture. Casuarina plants removed air pollutants more efficiently than Eucalyptus plants. Leaves of both species generally sorbed about the same volume of a given gas from the mixture and from the same single gas. The sorption rate over the 10 day exposure was almost constant after a higher sorption rate during the first day for both species.  相似文献   

8.
The impact of atmospheric industrial emissions on secondary pollutant formation depends on many factors; one of the most important being the environmental setting in which the industry is located. The environmental setting affects an industry’s impact on ozone levels through both the air mass dispersion (a function of topography and wind patterns) and the emissions of organic volatile compounds (VOC) and nitrogen oxides (NO x ) in the area. This model-based study shows how the sensitivity of surface ozone changes with the choice of source location. For the analysis, seven points distributed along the Tinto–Guadalquivir Basin (in the Southwestern Iberian Peninsula) were selected. This area is characterized by the close proximity of natural environments and crop fields to cities, roads, and industrial areas with high NO x emissions. Natural VOC emissions represent more than 60% of the total non-methane volatile organic compounds emitted in the study area. The results reveal that the largest increases in ozone levels are produced when the industry is located both far away from NO x emission sources and near to biogenic VOC emissions. Furthermore, the highest increases over the hourly and 8-hourly maximums, as well as the highest accumulated daily values, are found in areas characterized by high VOC/NO x emission ratios and NO x sensitivity. The study of the recurrent meteorological patterns along with the distribution of chemical indicators of the O3–NO x –VOC sensitivity allows the determination of the industry’s geographical impact on ozone levels. This information enables air quality managers to decide the future location of an industry minimizing its impact on smog levels.  相似文献   

9.
Woo  J.-H.  Baek  J. M.  Kim  J.-W.  Carmichael  G. R.  Thongboonchoo  N.  Kim  S. T.  An  J. H. 《Water, air, and soil pollution》2003,148(1-4):259-278
Emissions in East Asia for 1993 by administrative units and source types are estimated to support regional emission assessments and transport modeling studies. Total emission of SOx, NOx, soil NOx, N2O, and NH3 are 24 150, 12 610, 1963, 908, and 8263 kton yr-1, respectively.China's emission contribution is the highest for every species.The area sources are the most significant source type for SOx and NOx, but the fraction due to mobile source is highest for NOx. Major LPSs are located from the middle to the east part of China, south and middle-west part of South Korea, and the east part of Japan. The area sources of SOx show a pattern similar to population density, whereas NH3 shows a strong landuse dependency. Detail emissions analysis reveals higher SOx emission `cores' within each province. The estimated emissions are used to estimate sulfur deposition in the regions. The seasonal average sulfur distribution amounts are estimated from the ATMOS2 chemical transport model. The results showed anti-correlation with temperature for sulfur (SO2 + SO4 -2) concentrations and a positive correlation with rainfall for deposition.  相似文献   

10.
The photochemical transformation of SO2 and the generation of aerosol particles are investigated in a variety of atmospheres, with and without initial aerosols, in clean and polluted air, and with various pollutants. The pollutants in addition to the SO2 include O3, NO, NO2 and water vapor in a variety of combinations. The most striking finding is, that only with the combination of SO2, NO2, and H2O is the aerosol particle production large.  相似文献   

11.
The primary object of this paper is to provide a preliminary assessment of the effectiveness of NO x vs Volatile Organic Compounds (VOC) emissions control options in improving O3 air quality over the New York metropolitan area. To this end, we have applied the Urban Airshed Model (UAM) with the Carbon Bond IV (CB-IV) chemical mechanism utilizing the results of the Regional Oxidant Model (ROM) for the specification of initial/boundary concentrations and wind fields to the UAM. After examining the sensitivity of the predicted O3 concentrations to initial/boundary conditions and biogenic emissions, we have evaluated the impact of various hypothetical emissions reduction options on O3 air quality. Nested ROM/UAM simulations with an across-the-board reduction of 75% in the NO x and VOC emissions from sources located within the New York metropolitan area indicate that the option of VOC-only control is superior to the NO x -only control in reducing not only peak O3 levels over the entire modeling domain but also population exposure to unhealthy O3 levels. The model predicts that the combined 75% NO x and VOC control option also reduces the peak O3 concentration, but the improvement in O3 air quality is less than that predicted for the 75% VOC-only control strategy. Additional modeling analyses with different mix and levels of emissions control and meteorological conditions are needed to confirm these preliminary findings.  相似文献   

12.
Maize (Zea mays L.), soybean (Glycine max L.), and tomato (Lycopersicon esculentum Mill.) plants were grown in a controlled environment and exposed for 6 hr daily for 7 days to O3 at 0.15 μL L?1 and/or SO2 at 0.30 μL L?1 (daily exposures). Some plants exposed daily to O3 were also exposed to SO2 for 6 hr on the first, third, fifth, or seventh day of O3 exposure (variable exposures) and some plants exposed daily to SO2 were treated similarly with O3 to determine the growth effects of O3 or S02 pre- and/or post-treatments on S02 and O3 mixture response. Growth sensitivity to 6 hr S02 or 6 hr O3 treatments was generally affected by the previous history of O3 or SO2 exposure, respectively. Species differed in the number of days of O3 or SO2 treatments required to elicit maximum sensitivity to a single 6 hr O3 and SO2 treatment. Linear contrasts compared variable with daily exposures for the S02 and O3 regimes. Plants exposed to the gas mixture for a single day (variable exposures) tended to be smaller than those exposed to the gas mixture daily, with the exception of soybean exposed to SO2 during daily O3. The six treatments were carried out in eight exposure chambers, as a partially balanced incomplete block design in blocks of four due to separate environmental control of the exposure facilities. The partially balanced incomplete block design proved to be about 2.6 times as efficient as a complete block design. The inclusion of covariates further increased precision.  相似文献   

13.
Monocyclic Aromatic Hydrocarbons in Kathmandu During the Winter Season   总被引:1,自引:0,他引:1  
Mixing ratios of seven monocyclic aromatic hydrocarbons, as well as NO2, SO2 and O3, were measured by long path differential optical absorption spectroscopy (DOAS) at a suburban site in Kathmandu, Nepal, during Jan.–Feb. 2003. The results showed average benzene (3.9?±?1.8 ppbv), toluene (13.3?±?7.1 ppbv), and sum of xylene isomers (42.2?±?15.7 ppbv) mixing ratios in Kathmandu. The xylenes concentrations were higher than in the large cities that have been studied. The observed ratio of toluene to benzene (2.9?±?1.8) reflected the small fraction of vehicles with catalytic converters in the Kathamndu. Analysis of the late afternoon time series of aromatics, NO x , and wind data indicated that road traffic was one of the main sources of aromatics in the urban air. In addition, the correlations between aromatics, SO2, NO x , and PM10 during the night strongly suggested that fossil and biomass fuel burning made an important contribution to air pollution in the Kathmandu valley. Aromatic pollution was further strengthened by daily recurring stable meteorological conditions and the surrounding topography. The chemical reaction of aromatics with free radicals during the daytime could also be deduced. High ratios of phenol/benzene and para-cresol/toluene could not be explained by chemical processes, and suggested direct emission of phenol and para-cresol in the Kathmandu atmosphere.  相似文献   

14.
A series of experiments was conducted to study the interrelationship of sulfate (SO4) and nitrate (NO3) reduction in ‘Ky14’ tobacco plants (Nicotiana tabacum L.) as influenced by nutrient solution availability of NO3 and SO4. The activities of ATP sulfurylase and NO3 reductase, the first steps of SO4 and NO3 reduction, respectively, have been considered as indicators of the state of regulation of the assimilatory pathways of SO4 and NO3. Activity of ATP sulfurylase was derepressed when SO4 was limited in the nutrient solution, provided that there was a net accumulation of reduced N in the tissue. The availability of SO4 or the lack of N resulted in repressed activity of ATP sulfurylase. Nitrate reductase activity was induced when NO3 was available in the nutrient solution, provided that there was a net accumulation of reduced S in the tissue. When NO3 was limited in the nutrient solution or there was a lack of S, repression of NO3 reductase activity resulted.  相似文献   

15.
To assess the impact of air pollutants on the population dynamics of herbivores, the effects of pollutants on their natural enemies including predators, parasites, and pathogens must be evaluated in addition to direct effects and indirect effects mediated via the host plant. Insect parasitoids are an important group of such natural enemies providing many examples of partial or complete biological control of pest species. This study examined the effects of air pollutants (ozone (O3), sulphur dioxide (SO2), and nitrogen dioxide (NO2)) on the searching behaviour of insect parasitoids. A series of experiments comprising short-term, closed chamber fumigations of O3, SO2, and NO2 (100 nl l?1) of the braconid parasitoid (Asobara tabida) and aggregated distributions of its host larvae (Drosophila subobscura) was set up. Analysis of chamber results showed that the proportion of hosts parasitised and the searching efficiency of the parasitoids were both significantly reduced with O3 fumigation, but not with NO2 or SO2 fumigations. O3 fumigation reduced percentage parasitism by approximately 10%. Parasitoids were able to avoid patches with no hosts, both in filtered air controls and when exposed to pollutants. However in the O3 and NO2 treatments they appeared less able to discriminate between different host densities, suggesting that pollutants may interfere with the olfactory responses of the parasitoids. These results indicate the potential for air pollutants, particularly O3, to negatively influence the searching behaviour of parasitoids, and hence reduce the efficiency of natural enemy control of many pest species.  相似文献   

16.
There is growing concern that air pollution may have adverse impacts on crops in developing countries, yet this has been little studied. This paper addresses this issue, for a major leguminous crop of the Indian sub continent, examining the effect of air pollution in and around an Indian city. A field study was conducted using a gradient approach to elucidate the impact of air pollutants on selected production characteristics of Vigna radiata L. cv. Malviya Jyoti (mung bean) plants grown from germination to maturity at locations with differing concentrations of air pollutants around peri-urban and rural areas of Varanasi. The 6 -h daily mean SO2, NO2 and O3 concentrations varied from 8.05 to 32.2 ppb, 11.7 to 80.1 ppb and 9.7 to 58.5 ppb, respectively, between the sites. Microclimatic conditions did not vary significantly between the sites. Changes in plant performance at different sites were evaluated with reference to ambient air quality status. Reductions in biomass accumulation and seed yields were highest at the site experiencing highest concentrations of all three gaseous pollutants. The magnitude of response indicated that at peri-urban sites SO2, NO2 and O3 were all contributing to these effects, whereas at rural sites NO2 and O3 combinations appeared to have more influence. The quality of seed was also found to be negatively influenced by the ambient levels of pollutants. It is concluded that the air pollution regime of Varanasi City causes a major threat to mung bean plants, both in terms of yield and crop quality, with serious implications for the nutrition of the urban poor.  相似文献   

17.
The ambient concentration of SO2, NOx and Ox in the atmosphere of Hiroshima, Fukuyama and Fuchu city which were monitored by the prefectural monitoring stations, are examined to give a picture of the typical air pollution at these sites. Results show that the yearly concentrations of SO2 in these areas are significantly fall from 20 to 6 ppb during 1978–1996 when the NOx concentrations having no such significant change which varies from 40 to 30 ppb. The Photo-chemical Oxidant (Ox) increases annually at the rate of 0.3 ppb to 0.6 ppb in Hiroshima city only. To know the present situation of air pollution the Differential Optical Absorption Spectroscopy (DOAS) system is used in the city of Higashi Hiroshima. The daily average concentrations of SO2, NO2, O3 and HONO measured during the period of August 1999 to March 2000 ranged from 1.4 ppb to 2.8 ppb, 13 ppb to 26.9 ppb, 21 ppb to 53.6 ppb and 1 ppb to 4.3 ppb respectively. The patterns of concentrations of NO2 and O3 measured by DOAS look similar to the seasonal patterns of NOx and Ox by the conventional system.  相似文献   

18.
The research presented here represents a segment of a cumulative impact assessment of resource development in northeastern British Columbia. It considers point and area source emissions of sulphur and nitrogen oxides (SO2 and NO x , respectively), over a 2,156-km2 area. With the exception of open burning, all emissions are from Upstream Oil and Gas (UOG) sector sources (SO2, n?=?103; NO x , n?=?250; area, n?=?25). AERMOD View? was used to estimate the maximum potential concentration and deposition of these pollutants over 1-h, 3-h, 24-h, and annual averaging periods. Results are compared with various thresholds and limits from the policy and scientific literature to assess the potential cumulative effects of these pollutants. Of the thresholds employed, exceedances of the 1-h and 24-h NO x concentrations and the annual SO2 concentration are predicted. There were no predicted exceedances of annual deposition thresholds (i.e., ??Critical Loads??). Maximum predicted concentrations vary between compounds and are related to boundary layer stability, elevation, and distance from sources. Comparison with nearby monitoring data indicated that predicted concentrations were reasonable and that AERMOD provides a useful tool for approaching the potential cumulative impacts of air pollution from multiple sources. While the accuracy of Gaussian-based annual deposition estimates is questioned, model enhancements that could extend the application to more comprehensive assessments are suggested. Lastly, the implications of predicted threshold violations for forest ecosystems and local forest-dependent First Nations communities are discussed.  相似文献   

19.
Pandey  R. A.  Malhotra  S.  Rajvaidya  A. S.  Sharma  S.  Peshwe  S.  Raman  V. K.  Bal  A. S. 《Water, air, and soil pollution》2003,142(1-4):243-260
Gases and suspended particulate matter are sampled and measured in situ at different sites within the city of Madrid to determinethe air pollution in the city. Lead concentrations in air are also determined. The information needed to assess levels of contaminants is obtained combining several analytical techniques,which provide real time concentration data of particles andgases. Particulate matter (PM), SO2, CO, O3, NOx,NO2, CH4, total hydrocarbons and Pb were measured. Concentrations of pollutants are averaged over periods of hours,days, months and years. Variations of contaminant concentrationsin the last years are presented. Spatial and temporal distribution follows that of the traffic, the main source of pollution in Madrid City. Some specific measurements were carriedout to understand the influence of traffic emissions at themeasured site. Further, all measured concentrations never exceeded the European Union Directives.  相似文献   

20.
A large amount of pollutants in highly industrialized areas is produced by a photochemical reaction of NO x and SO x , which is a result of the production of energy-related fuel combustion. These pollutants provide the major source of condensation nuclei for the formation of fog in the areas of busy highways, airports, seaports, etc. The present study simulates how these pollutants affect the formation of advection fog. Both microphysical and macrophysical processes are considered in investigating the time dependent evolution of the spectra of condensation nuclei associated with both polluted and clean atmospheres during the time period of advection fog formation. In the first part of the series of this paper, the initial aerosol population concerns a monodisperse, multi-component aerosol model. The results show that both SO x , and NO x as condensation nuclei provide great contributions in the formation of advection fog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号