首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During lactation, daily separation of sow and piglets, intermittent suckling (IS), can induce lactational oestrus and ovulation. This study examined effects of IS on subsequent early embryo survival and development. Multiparous Topigs40 sows were separated from their piglets for either 12 consecutive hours per day (IS12, n = 13) or two times for 6 h per day (IS6, n = 10) from day 14 of lactation onwards until 23 days after ovulation. Control sows (C, n = 17) were weaned at day 21 of lactation. Oestrus was shown in all treatments within 5 days after the start of treatment. Sows were inseminated each day of oestrus and slaughtered at D23 after ovulation. Intermittent suckling did not significantly affect pregnancy rates of sows (75% IS12 vs 78% IS6 vs 94% C; p > 0.10). Embryo survival was not significantly affected by IS (IS12: 57%; IS6: 51%; p > 0.10) although it seemed to be lower than in C sows (70%). Some parameters of embryo, placental and uterine development were affected by IS, especially in the IS6 group. IS6 embryos had shorter placentas (17.5 +/- 1.2 cm; p < 0.05) than C (20.3 +/- 1.4 cm) and IS12 sows (20.9 +/- 0.7 cm) were smaller and less developed than C sows (p < 0.05). In conclusion, embryo survival does not seem significantly affected by IS, although numerical differences were great. Embryo development, however, was negatively affected in IS6 sows possibly due to a combination of high milk production, stress and lactational effects on uterine development.  相似文献   

2.
The aim of this study was to monitor changes in cortisol levels in sows around the time of separation from their piglets, in two different intermittent suckling regimes, compared with that in conventionally weaned sows. Sows were either weaned at 21 days of lactation (CONT) or subjected to an intermittent suckling regime (IS) from 14 days of lactation onwards. Sows in the IS regimes were separated from their piglets for 12 h every day, either from 08:00 to 20:00 hours (IS12) or from 08:00 to 14:00 hours and 20:00 to 02:00 hours (IS6). Separation caused a transient increase in cortisol levels on the first (CONT and IS12) and second (IS12) day of separation, compared with a gradual decline from early morning when the sows were still continuously suckling. In IS6 sows, in contrast, the transient rise in cortisol levels after separation at 08:00 hours was observed on the first 3 days and also on day 7 of the IS regime. Cortisol parameters were correlated with peri‐ovulatory characteristics like onset of oestrus, onset of the LH surge and time of ovulation. Onset of the LH surge was delayed in IS6 sows. In conclusion, increase in cortisol levels as a consequence of separation of sows and piglets, is an acute, incidental phenomenon in IS12 and CONT sows, but shows a repeated acute elevation in IS6 sows, possibly placing IS6 sows at a higher risk of influencing peri‐ovulatory processes and developing cystic follicles.  相似文献   

3.
To get more insight in how insulin secretion patterns and corresponding insulin-like growth factor-1 (IGF-1) levels are related to luteinizing hormone (LH) secretion, follicle development and ovulation, 32 multiparous sows were fed either a dextrose plus lactose-containing diet at 4 h intervals (DL; each 150 g/day) or an isocaloric control diet at 12 h intervals (CTRL; containing soybean oil) during the weaning-to-ovulation interval (WOI). Insulin parameters (basal, peak levels and mean insulin) and IGF-1 levels during the WOI were similar for both treatments, but the insulin secretion pattern differed (related with feeding frequency and meal sizes). Oestrus and ovulation characteristics were not influenced by treatment. The LH surge was higher in CTRL compared with DL sows (3.73 vs 3.00 ng/ml; p = 0.03). Average diameter (6.5 vs 6.1 mm; p = 0.08) and uniformity (CV: 11 vs 15%, p = 0.02) of follicles ≥3 mm at day 4 after weaning was higher in CTRL compared with DL sows. Basal insulin levels were positively related with follicle diameter at ovulation (β = 0.05 mm/(μU/ml); p = 0.04) and negatively related with LH surge level (β = -0.07 (ng/ml)/(μU/ml); p = 0.01). Insulin area under the curve (AUC) (β = 0.037 (ng/ml)/1000 μU; p = 0.02) and IGF-1 levels (β = 0.002 (ng/ml)/(ng/ml); p < 0.01) were positively related to basal LH level around the LH surge. From these data, we conclude that insulin and IGF-1 levels during the WOI are related to LH secretion and follicle development. Not only the absolute level of insulin seems important, but also the pattern within a day in which insulin is secreted seems to affect LH secretion and development of pre-ovulatory follicles.  相似文献   

4.
In a Hungarian large breeding unit, 481 weaned sows were assigned to three groups and were treated as follows. Sows in Group 1 (Control, n=161) were artificially inseminated (3.01 +/- 0.4 times) during their standing reflex; sows in Group 2 (n=160) were artificially inseminated 3 times at 12-hour intervals, independent of detection of oestrus and immediately after administration of a GnRH-agonist at 96 hours postweaning; and sows in Group 3 (n=160) were artificially inseminated 3 times at 12-hour intervals, beginning at their standing reflex after administration of a GnRH-agonist. Pre-trial daily average lactational feed intake, average daily feed intake from weaning to oestrus, oestrus within 6 days of weaning (%), ovulation within 6 days of weaning (%), wean-to-oestrus interval (h), duration of oestrus (h), follicle size (mm), interval from oestrus to ovulation (h), subsequent day 24 pregnancy rate (%), farrowing rate (%) and total number of pigs born were evaluated. Pre-trial average daily voluntary lactational feed intake was 7.1 +/- 0.5 kg in Group 1, 7.2 +/- 0.4 kg in Group 2, and 7.3 +/- 0.7 kg in Group 3 (P > 0.05). Average voluntary daily feed intake from weaning-to-oestrus was 4.3 +/- 0.9 kg in Group 1, 4.2 +/- 0.8 kg in Group 2, and 4.1 +/- 0.5 kg in Group 3 (P > 0.05). Oestrus was detected within 6 days of weaning in 143 (88.8%) sows in Group 1, 143 (89.4%) sows in Group 2, and in 142 (88.8%) sows in Group 3. Follicle size did not differ (P > 0.05) among the groups. In Group 1, 83.2%, in Group 2, 90.6%, and in Group 3,91.3% of the sows ovulated within 6 days of weaning (P < 0.05), but there were no significant (P > 0.05) differences in 24 Day pregnancy rates (81.4%; 91.3%; and 92.5%). Farrowing rates were in Group 1, 84.5%, in Group 2, 91.3%, in Group 3, 91.9% (P > 0.05). Wean-to-oestrus interval was 115.5 h in Group 1, 114.9 h in Group 2, and 115.7 h in Group 3 (P > 0.05). Duration of oestrus was significantly shorter in Group 2 (41.9 h) and Group 3 (42.1 h) than in Group 1 (68.3 h) (P < 0.001). Similarly, the interval from oestrus to ovulation was significantly different (P < 0.01) between the groups (Group 1, 49.0 h Group 2, 32.0 h, and Group 3, 31.1 h). Sows in Group 2 (12.7) and Group 3 (12.6) had a significantly higher (P < 0.01) number of pigs born than sows in Group 1 (n = 10.9). The interval between oestrus and ovulation was highly and positively correlated (r = 0.83) with the duration of oestrus.  相似文献   

5.
The objectives of the study were to evaluate the oestrus behaviour and to determine the timing of ovulation in relation to onset of oestrus and the pre-ovulatory LH surge in mithun (Bos frontalis). For this purpose, the blood samples collected at 15-min intervals for 9 h period following onset of oestrus and thereafter, at an interval of 2 h till 4 h post-ovulation for three consecutive cycles from 12 mithun cows were assayed for plasma LH and progesterone. Ovulation was confirmed by palpation of ovaries per rectum at hourly intervals. Various signs of behavioural oestrus were also recorded. The common signs of oestrus and their frequency of occurrence in mithuns were following and mounting by male mithuns (100%), standing to be mounted (100%), frequent urination (62.33%), raising of tail (65.23%), swelling of vulva (54.26%) and congestion of vulvar mucous membrane (69.87%). The pre-ovulatory LH surges consisted of several pulses (2.92 +/- 0.26 pulses/animal; range, 1-4). The mean (+/-SEM) peak level of LH for individual mithun varied from 6.99 +/- 0.44 to 12.69 +/- 2.10 ng/ml and the mean pooled LH peak concentration was 9.10 +/- 0.60 ng/ml. The highest peak (highest amplitude of LH during LH surge) was 10.83 +/- 0.76 ng/ml (range, 8.07-16.49 ng/ml). The duration of LH surge was 6.98 +/- 0.22 h (6-8 h). Onset of LH surge was at 1.23 +/- 0.17 h post-oestrus onset (range, 0.25-2.25 h). Mean plasma progesterone stayed low (<0.24 ng/ml) during the entire duration of sampling. Ovulation occurred at 26.92 +/- 0.31 (range, 26-29 h) after the onset of oestrus and 18.63 +/- 0.35 h (range, 17-20.75 h) after the end of LH surge. The occurrence of the highest LH peaks within a narrow time frame of 2- to 5-h post-oestrus onset in mithuns could have contributed to the animals ovulating within a narrow time interval. These results are very promising from a practical standpoint of potential success when AI program in this species is implemented in a big way. Furthermore, the results of the occurrence of LH pulses during pre-ovulatory LH surges, which are required for ovulation in this species of animals, is unique and species specific.  相似文献   

6.
An experiment was conducted to study effects of intermittent suckling on creep feed intake and weight gain of litters. Loss of weight and backfat during lactation, as well as reproductive performance, were also measured. Batches of multiparous sows (Parity 1 to 12, 4.1 on average) were either suckled intermittently (IS, eight batches; n = 50) or continuously (control, eight batches; n = 62). Litters were weaned at 27 +/- 2 d of age, on average. Litter size (11.1 +/- 0.2 piglets, on average) was standardized within a batch within 3 d of birth. All litters had free access to creep feed and water from 1 wk of age onward. In the IS group, litters were separated from the sow for a period of 12 h/d (0930 to 2130), starting 11 d before weaning. Rectal ultrasonography was applied at d 3 after weaning to check the ovaries for follicle development or presence of corpora lutea. Creep feed intake by the litters during lactation was higher in IS litters than in control litters (686 +/- 57 vs. 314 +/- 42 g/piglet, P < 0.01). The distribution of creep feed intake shifted from a skewed one, with a majority of litters consuming less than 250 g/piglet in control litters, to a normal distribution, with an average creep feed intake of 500 to 750 g/piglet in IS litters. During the 7 d after weaning, creep feed intake in IS litters was also higher (281 +/- 15 vs. 204 +/- 9 g-piglet(-1) x d(-1), P < 0.01). The ADG of piglets during lactation was negatively affected by IS, resulting in lower weight at weaning (7,229 +/- 140 vs. 7,893 +/- 145 g/piglet, P < 0.05). During the 7 d after weaning, however, ADG was higher in IS litters (255 +/- 10 vs. 177 +/- 8 g-piglet-1 x d(-1), P < 0.01), and 7 d after weaning, the weights of the litters were similar (9,011 +/- 167 vs. 9,132 +/- 164 g/ piglet, P = 0.81). The IS litters that consumed little or no feed during lactation had an ADG after lactation that was higher than in control litters, with comparable creep feed intake during lactation: 204 vs. 136 g/d. Body weight loss by the sows during lactation was lower in IS sows (-10 +/- 2 vs. -16 +/- 1 kg, P < 0.05). A higher percentage of IS sows ovulated during lactation (22 vs. 3%, P < 0.01), and weaning-to-ovulation interval (excluding sows with lactational ovulation) was shorter in IS sows (4.7 +/- 0.2 vs. 5.3 +/- 0.2 d, P < 0.05). We conclude that IS increased creep feed intake during lactation, and that IS increased ADG after weaning, despite lower weaning weights. Ovulation during lactation was induced in 22% of the IS sows.  相似文献   

7.
In order to prove the effect of 'fixed time insemination' and insemination at standing oestrus after post-weaning application of GnRH, in a Croatian large breeding unit, 502 sows were assigned to three groups and were artificially inseminated (AI) at their first post-weaning oestrus as many times as they stand, in 24-h intervals. The groups were treated as follows: group 1 (control, n = 160) were AI during their standing reflex; group 2 ['GnRH-fixed time insemination' (GnRH-FT-AI), n = 175] were AI, independent of detection of oestrus and following administration of GnRH-agonist at 96 h post-weaning; group 3 [GnRH insemination at standing oestrus (GnRH-OE-AI), n = 167] the animals were GnRH-agonist treated as group 2 and were AI at their standing reflex. Pre-trial daily average lactational feed intake, average daily feed intake from weaning to oestrus, oestrus within 6 days post-weaning (%), ovulation within 6 days post-weaning (%), weaning-to-oestrus interval (h), duration of oestrus (h), follicle size (mm), interval from oestrus to ovulation (h), subsequent day 24 pregnancy rate (%), farrowing rate (%) and total pigs born were evaluated. Pre-trial average daily lactational voluntary feed intake was 7.1 +/- 0.08 kg in group 1, 7.0 +/- 0.07 kg in group 2 and 7.1 +/- 0.17 kg in group 3 (p > 0.05). Average voluntary daily feed intake from weaning to oestrus was 5.1 +/- 0.3 kg in group 1, 5.2 +/- 0.5 kg in group 2 and 5.2 +/- 0.19 kg in group 3 (p > 0.05). Oestrus was detected within 6 days post-weaning in 134 (83.8%) in control, 164 (93.7%) in GnRH-FT-AI and 155 (92.8%) animals in GnRH-OE-AI groups (p = 0.05). Follicle size did not differ (p > 0.05) among the groups. In control 82.8%, in GnRH-FT-AI 91.5% and in GnRH-OE-AI 91.0% of the sows ovulated within 6 days post-weaning (p = 0.04), and had 80.6, 90.9 and 89.7% 24-day pregnancy rates (p = 0.16), respectively. In GnRH-FT-AI group 90.2%, in GnRH-OE-AI sows 89.7%, in control animals 79.9% farrowing rates were recorded (p = 0.17). Weaning to oestrus interval was 113.1 h in control, 114.1 h in GnRH-FT-AI and 112.6 h GnRH-OE-AI (p > 0.05). Duration of oestrus was significantly shorter in GnRH-FT-AI (44.9 h) and GnRH-OE-AI (48.1 h) animals, compared with the control (62.9 h) sows (p = 0.001). Similarly, the interval from oestrus to ovulation revealed significant (p = 0.004) differences between the groups (control 44.1 h, GnRH-OE-AI 34.1 h and GnRH-FT-AI 32.9 h). GnRH-FT-AI (12.5) and GnRH-OE-AI (12.6) sows had significantly higher (p = 0.01) number of total pigs born (n = 10.4) compared with control sows. GnRH-agonist-gel treatment to the sow shortens duration of oestrus, the interval from oestrus to ovulation, and may eliminate the need for oestrus detection in the hands of skilled personnel.  相似文献   

8.
Animal welfare concerns require the development of housing systems that allow the animals to express their natural behaviour. One example of this is the group-housing system for lactating sows. The present study aimed at exploring ovarian activity in such a system. Thirty-eight sows farrowing individually outdoors during spring and summer, and indoors during autumn and winter, and group-housed in groups of four during weeks 3-7 of the lactation period, were monitored regarding reproductive functions, behaviour and production during their first to fourth lactation period. Average ovulation frequency during lactation was 47%. Only 50% of these ovulating cases were accompanied by a standing oestrus. Lactational ovulation frequency was higher in later parities (p < 0.001). Ovulation frequency was higher (p < 0.05) during winter (74%) and spring (69%), than during summer (10%) and autumn (23%). Occurrence of lactational ovulation was associated with some aspects of suckling behaviour and also with litter weight gain (p < 0.05). Forty-nine per cent of the lactational ovulations occurred during the seventh week of lactation. Timing of ovulation seemed positively (p = 0.08) associated with weight loss during lactation. Compared with the sows that were anoestrus during lactation, oestradiol-17beta values were higher (p < 0.05) only in the week before occurrence of lactational ovulation. Weaning-to-oestrous interval was prolonged (p < 0.05) among the sows that ovulated during lactation. The present study identifies several factors influencing ovarian activity among group-housed sows, thereby providing tools for the control of lactational ovulation in group-housing systems.  相似文献   

9.
In 45 primiparous sows, we examined endocrine, ovarian and reproductive responses to split-weaning or five injections per day of 800 ng GnRH from 18 to 21 days of lactation. There was no effect of treatment on absolute or changes in sow weight or backfat depth during lactation. Average piglet growth rates were similar among treatments except that piglets suckling split-weaned sows grew faster (p < 0.05) during days 18–21. On day 18, mean plasma LH concentrations and LH pulse frequency remained relatively stable in conventionally weaned sows but increased (p < 0.01) in response to split-weaning and GnRH. Prior to weaning on day 21, mean plasma LH concentrations remained elevated in GnRH-treated sows but had returned to control levels in split weaned sows. There was no treatment effect on preweaning LH pulse frequency noted on day 21. Weaning was associated with an increase in plasma LH concentrations in all the treatment groups. Mean plasma IGF-I remained relatively constant in conventionally weaned and GnRH sows, decreased in response to split weaning on day 18 (p < 0.02), but were elevated (p < 0.03) in split wean sows on day 21. On the day after weaning, split wean sows had more (p < 0.04) ovarian follicles ≥3 mm than conventionally weaned sows, with GnRH sows being intermediate. The wean-to-oestrus interval was reduced in split-wean sows compared with those conventionally weaned (p < 0.01), with GnRH sows being intermediate. There was no effect of treatment on ovulation rates, numbers of embryos, or embryonic survival rates. These data indicate that split-weaning of litters results in a more rapid return to oestrus after weaning and that this effect is associated with a transient acute increase in circulating gonadotrophins and earlier resumption of ovarian follicular development.  相似文献   

10.
Normally, sows are in anoestrus during lactation and start their new cycle at the day of weaning. Modern hybrid primiparous sows that suckle large numbers of piglets may lose substantial amounts of body reserves during lactation. This compromises follicle development during lactation. As modern sows have short weaning-to-oestrus intervals, these compromised follicles are recruited for ovulation directly after weaning, resulting in lower ovulation rates and lower embryo survival. Postponing or skipping first oestrus after weaning in primiparous sows may help to limit the negative consequences of lactation on subsequent reproduction. Multiparous sows may have very high litter sizes, especially after long lactations as applied in organic sows. These high litter sizes compromise piglet birthweight and survival and subsequent performance. Inducing lactation oestrus in multiparous sows may help to limit litter size and improve piglet survival and performance. This study discusses physiological and reproductive effects of extending the start of a new pregnancy after lactation in primiparous sows and induction of lactation oestrus in multiparous sows. We thereby challenge the view that weaning is an ideal start for the reproductive cycle in modern sows.  相似文献   

11.
The aim of this study was to further investigate the effect of using progestin altrenogest and hCG to synchronize the oestrous cycle and its effect on follicular development, ovulation time and subsequent reproductive performance. Thirty crossbred gilts were divided into three groups. Group A (control) received a 5 ml of normal saline for 18 consecutive days by individually top-dressing. Groups B and C gilts received 20 mg (5 ml) of progestin altrenogest for 18 consecutive days by individually top-dressing. On day 3 (72 h) after withdrawal of progestin altrenogest, Group C gilts received hCG (500 IU, im). The follicular development and ovulation time were examined by transabdominal ultrasonography. Subsequent reproductive performances, i.e. number of total born per litter (NTB), number of live born per litter (NBA), number of stillbirth per litter (NSB), average piglet birth weight (ABW), lactation length (LL) and weaning to oestrous interval (WOI), were recorded. None of the gilts in Group A showed oestrus within 10 days after withdrawal of normal saline. Groups B (eight of 10) and C gilts (four of 10) came into oestrus at 5.6 +/- 0.5 and 6.5 +/- 0.6 days after withdrawal of progestin altrenogest, respectively. The ovulation time of Groups B and C gilts took placed at 25.0 +/- 4.7 and 25.0 +/- 5.0 h after standing oestrus, respectively. The pre-ovulatory follicular size (diameter) of Groups B and C gilts was 8.0 +/- 2.0 and 11.0 +/- 3.0 mm, respectively. A tendency of larger litter size (NTB) in Group B gilts was found when compared with Group A gilts. To conclude, using progestin altrenogest alone can be used to synchronize the oestrous cycle in gilts without unenthusiastic effect on the follicular development, ovulation time and subsequent reproductive performances. However, treatment of gilts with hCG at day 3 (72 h) after withdrawal of altrenogest had unenthusiastic effect on oestrus synchronization.  相似文献   

12.
The effect of weaning the 4-5 heaviest piglets in the litter on day 33 of lactation and the remainder 2 days later (fractionated weaning) on plasma levels of prolactin, cortisol, oestradiol-17 beta (E2), progesterone (P4) and LH, as well as on the weaning to oestrus interval in primiparous sows was studied. Twelve crossbred sows were grouped into 6 pairs according to farrowing date and litter size. The litter of 1 sow in each pair (F) was weaned in 2 stages, and the other conventionally weaned at 35 days (C). Blood samples were collected via a permanent jugular vein catheter every 3 h from 9 a m to 9 p m daily throughout the experimental period, and intensively at 15 min intervals for 12 h on the day of first and final weaning and for 6 h on the day after each weaning. All sows were slaughtered following their first post-weaning oestrus and the reproductive organs were macroscopically examined. Lactational oestrus was not observed in any of the sows. Sows from 5 out of 6 pairs showed oestrus within 8 days of weaning and post-mortem examination showed normal ovulation. There was a tendency for the F sows to have a shorter weaning to oestrus interval, as compared with the C sows (5 of 6 pairs, 4.8 days v 5.6 days). The plasma levels of prolactin around weaning were not significantly different between the 2 groups. Within 6 h after final weaning, the prolactin concentrations decreased gradually from 7.6 and 8.7 to 1.6 and 1.7 microgram/l in the control and treatment groups, respectively. The plasma levels of cortisol, showing a diurnal rhythm (with the lowest level at 6 and/or 9 p m), did on no occasion differ between the 2 groups. On the day of final weaning, no diurnal rhythm was observed, with cortisol remaining high at 6 and 9 p m. The plasma levels of E2 and P4 were low until final weaning in both groups. After final weaning the E2 levels rose faster in the F sows than in the C sows, to 44.3 and 34.8 pmol/l, respectively, on day 2 (p less than 0.01). No significant differences in levels of plasma LH and the number of LH pulses were observed between the groups. After final weaning the average and base levels of LH and the number of LH pulse(s) increased significantly.  相似文献   

13.
The objectives of this study were to determine factors affecting the reproductive performance of primiparous sows early weaned (EW; n = 35) at d 14 or conventionally weaned (CW; n = 35) at d 24 of lactation. Sow BW and backfat were recorded at farrowing, weekly until weaning, and at standing heat. Feed intake was controlled throughout lactation to standardize nutritional effects on subsequent reproductive performance. Litter size was standardized across treatments within 48 h after farrowing, and litter weight was recorded until weaning. In subsets of sows, blood samples were collected from 10 h before to 10 h after weaning, and then every 6 h until ovulation. Sows were heat checked twice daily and bred at 24-h intervals during standing heat using pooled semen. Ultrasonography every 6 h determined time of ovulation. Sows were either slaughtered within 24 h after ovulation to assess ovulation rate, fertilization rate, and embryonic development in vitro, or at d 28 of gestation to determine ovulation rate and embryonic survival. Compared with CW sows, EW sows had more backfat at weaning (15.9 +/- 0.5 vs. 14.7 +/- 0.5 mm; P < 0.001). Also, CW sows tended to lose more BW and to have lower IGF-I concentrations, indicating poorer body condition. Duration of lactation did not affect ovulation rate (EW = 17.6 +/- 0.7; CW = 18.7 +/- 0.6), fertilization rate (EW = 96.0 +/- 2.2; CW = 88.2 +/- 4.7%), or embryo survival to d 28 (EW = 62.5 +/- 4.5; CW = 63.1 +/- 5.0%). There was a marginal effect of duration of lactation on weaning-to-estrus interval (EW = 120 +/- 3; CW = 112 +/- 3 h; P < 0.06) and duration of estrus (EW = 52.4 +/- 2.3; CW = 46.3 +/- 2.2 h; P < 0.08). Overall, embryonic survival, not ovulation rate, seems to be the limiting factor for potential litter size in the second parity. Although fertility in both EW and CW sows studied was compromised, endocrine and metabolic data indicate that the mechanisms affecting reproductive performance may differ between the two weaning systems. The LH, FSH, and estradiol data from the EW sows are characteristic of animals with limited follicular development and incomplete recovery of the hypothalamic-pituitary-ovarian axis; consequently, the integrity of the uterine environment may be adversely affected and limit embryonic survival. In CW sows, variability in metabolic state seemed to be the key factor limiting the fertility, again adversely affecting embryonic survival.  相似文献   

14.
The aims of this study were to evaluate the chronology of periovulatory events (oestrus behaviour, LH surge and ovulation) in 16 superovulated Manchega sheep and to determine whether follicular status at start of the FSH supply might affect their occurrence. Mean timing for onset of oestrus behaviour was detected at 28.1 +/- 0.7 h after sponge withdrawal; the preovulatory LH surge and ovulation started at 37.2 +/- 0.7 h and 65.4 +/- 0.7 h after progestagen withdrawal, respectively. The intervals between oestrus, LH surge and ovulation were affected by a high individual variability, which might be the cause for reported decreased efficiency in embryo production. Current results also addressed the role of follicular status at start of the superovulatory treatment on the preovulatory LH surge and the ovulation. The interval LH surge-ovulation was increased in ewes with a growing dominant follicle at starting the FSH treatment (32.3 +/- 0.9 vs 28.6 +/- 0.5 h, p < 0.05). The developmental stage of the largest follicle at starting the superovulatory treatment also affected occurrence of LH surge and ovulation; follicles in growing phase advanced the occurrence of the LH surge and ovulation when compared to decreasing follicles (33.0 +/- 1.0 vs 43.5 +/- 1.1 h, p < 0.05, for LH peak and 60.7 +/- 1.1 vs 72.8 +/- 1.2 h, p < 0.05, for ovulation). Thus, only ewes with growing follicles ovulated prior to 55 h after sponge withdrawal; conversely, no sheep with decreasing follicles ovulated earlier than 67 h, when an 85.7% of the ewes bearing growing follicles has ovulated at 63 h.  相似文献   

15.
The weaning to estrus and weaning to ovulation intervals in sows are controlled by ovarian follicular growth after weaning. Longer intervals could be caused by smaller diameter follicles at weaning that take more time to reach a preovulatory size. We addressed this hypothesis by decreasing the diameter of follicular populations before weaning and then measuring follicular development and interval to estrus and ovulation after weaning. The posterior vena cava, cranial to the entry of the ovarian vein, was cathetered for blood sampling and infusion in 20 sows at 12 +/- 1 d after farrowing. Sows were assigned randomly to receive either 30 mL of charcoal-treated follicular fluid (FF, n = 9; a treatment known to decrease serum FSH and follicular diameter) or 30 mL of saline (n = 11) by venous infusion thrice daily (0700, 1500, and 2300 h) for 96 h beginning at 14 +/- 1 d after farrowing. Sows were weaned 48 h after the last infusion. Blood samples were collected for FSH analysis thrice daily beginning on the day of catheterization and continuing until ovulation. Follicular diameter was determined once daily by transrectal ultrasonography. A treatment x time interaction was detected for serum FSH (P < 0.001) and follicular diameter (P < 0.001) because serum FSH and the diameter of follicular populations decreased in FF sows during the infusion period. After the infusion period, serum FSH rebounded in FF sows, and follicles resumed growth but grew at the same rate as those of saline-treated sows, thus failing to achieve equivalent diameters relative to saline-treated sows on a given day after weaning. As a result, sows treated with FF had longer (P < 0.05) weaning to estrus (6.1 +/- 0.4 d) and weaning to ovulation (8.6 +/- 0.5 d) intervals compared with saline-treated sows (4.7 +/- 0.4 d and 7.2 +/- 0.4 d, respectively). We conclude that the diameter of the follicular population at weaning is one factor that controls interval to estrus and ovulation in sows. Small follicles at weaning cannot undergo compensatory growth and require additional time to reach a preovulatory size.  相似文献   

16.
Low protein intake during lactation has been demonstrated to increase the loss of body protein and to reduce the reproductive performance of female pigs. The objectives of the current experiment were 1) to determine whether protein (lysine) restriction alters levels of somatotropic hormones, insulin, follicle-stimulating hormone, and leptin around weaning, and 2) to evaluate the relationships between these eventual alterations and postweaning reproductive performance. One day after farrowing, crossbred primiparous sows were randomly allocated to one of two diets containing 20% crude protein and 1.08% lysine (C, n = 12) or 10% crude protein and 0.50% lysine (L, n = 14) during a 28-d lactation. Diets provided similar amounts of metabolizable energy (3.1 Mcal/kg). Feed allowance was restricted to 4.2 kg/d throughout lactation, and litter size was standardized to 10 per sow within 5 d after farrowing. Catheters were fitted in the jugular vein of 21 sows around d 22 of lactation. Serial blood samples were collected 1 d before (day W - 1) and 1 d after (day W + 1) weaning, and single blood samples were collected daily from weaning until d 6 postweaning (day W + 6). Sows were monitored for estrus and inseminated. They were slaughtered at d 30 of gestation. During lactation, litter weight gain was similar among treatment groups. Reduced protein intake increased (P < 0.001) sow weight loss (-30 vs -19 kg) and estimated protein mobilization throughout lactation (-4.1 vs -2.0 kg). On day W - 1, L sows had higher (P < 0.02) plasma glutamine and alanine concentrations, but lower (P < 0.05) plasma tryptophan and urea than C sows. Mean and basal plasma GH were higher (P < 0.001), whereas plasma IGF-I and mean insulin were lower in L than in C sows on day W - 1. Preprandial leptin did not differ between treatments on day W - 1, but was higher (P < 0.01) in L sows than in C sows on day W + 1. Mean FSH concentrations were similar in both treatments on day W - 1 (1.3 ng/mL), but L sows had greater (P < 0.001) mean FSH on day W + 1 than C sows (1.6 vs 1.2 ng/mL). The weaning-to-estrus interval (5 +/- 1 d) was similar in both groups. Ovulation rate was lower in L than in C sows (20.0 +/- 1 vs 23.4 +/- 1, P < 0.05). No obvious relationships between reproductive traits and metabolic hormone data were observed. In conclusion, these results provide evidence that protein (lysine) restriction throughout lactation alters circulating concentrations of somatotropic hormones and insulin at the end of lactation and has a negative impact on postweaning ovulation rate.  相似文献   

17.
The effect of a modified eros centre on weaning to oestrus interval, follicle size, ovulation and farrowing rate and total born litter size was investigated. In modified eros centre 94.4% and in group housing 79.1% of the sows (p < 0.01) expressed oestrus within 10 days post‐weaning. Weaning to oestrus interval was shorter (p < 0.001) for sows kept in modified eros centre. The interval from onset of oestrus to the time of ovulation was longer for sows in group housing (p=0.05). The time of ovulation was negatively correlated (r=?0.50) with the interval from weaning to oestrus (p=0.005). The time of ovulation after onset of oestrus was significantly (p < 0.05) shorter for sows expressing oestrus within 2–4 days of weaning, compared with the animals that expressed oestrus between days 5 and 6 post‐weaning and was shortest for sows expressing oestrus after day 6 post‐weaning. Farrowing rate was not affected by a modified eros centre. Litter size tended to be smaller in group‐housed weaned sows (p=0.10). The timing of last artificial insemination relative to time of ovulation did not affect litter size (p > 0.10). The implication of these results is that a modified eros centre may improve some of the post‐weaning oestrous parameters of the sow.  相似文献   

18.
Twenty-five 2-3-year-old cycling does weighing 17-25 kg were obtained from semi-nomadic farmers and managed under controlled conditions while simulating the traditional management system. Oestrus was synchronized using progestogen impregnated vaginal pessaries. Blood samples were collected daily for progesterone assay from the day of pessary withdrawal up to one complete oestrous cycle. Oestrus was checked twice daily using vasectomized bucks. Ovulation rate was determined by direct observation of the ovaries following laparotomy on day 5-7 of the oestrous cycle. Following oestrus synchronization, mean ovulation rate was 1.68 +/- 0.13. Mean oestrous cycle length and duration of oestrus were 21.30 +/- 0.28 days and 21.37 +/- 0.24 hours respectively. Plasma progesterone concentrations ranged from non-detectable levels on the day of oestrus to 5.2 +/- 0.28 ng ml at mid-cycle. The duration of elevated progesterone level (greater than 2 ng/ml) was about 12 days. The peak progesterone values did not differ between animals with different ovulation rates. However, the plasma progesterone concentration during the early cycle (days 0-6) was significantly lower in the single ovulators compared with others. There were no major differences in plasma progesterone levels during the oestrous cycle of Red Sokoto does with different ovulation rates.  相似文献   

19.
The endocrine function of the individual components of the hypothalamo-hypophyseal-ovarian axis of the postweaning anestrous sow was evaluated by monitoring the sow's response to exogenous estradiol, gonadotropin releasing hormone (GnRH), and gonadotropins. Sows (4 to 6/group) not returning to estrus by 42.8 +/- 3.1 days after weaning were assigned to 1 of the following treatments: 10 micrograms of estradiol benzoate (EB)/kg of body weight; 200 micrograms of GnRH, 1,000 IU of pregnant mare's serum gonadotropin (PMSG); 1,000 IU of human chorionic gonadotropin (HCG); or 4 ml of saline solution plus 2 ml of corn oil. A preovulatory-like surge of luteinizing hormone [(LH) greater than 12 hours in duration] was observed in all weaned sows treated with EB. All EB-treated sows exhibited estrus and ovulated but none conceived. Sows given GnRH had transiently increased (less than 3 hours) LH concentrations that were not associated with estrus or ovulation. Treatment with PMSG caused an increase in peripheral concentrations of 17 beta-estradiol that was followed by an LH surge, estrus, ovulation, and conception. Treatment with HCG caused an increase in circulating concentrations of 17 beta-estradiol that was accompanied by a surge of LH in some sows and ovulation in all sows. Not all sows treated with HCG exhibited estrous behavior, but conception occurred in 2 of 3 sows that were mated at estrus. None of the sows treated with saline plus corn oil had consistent changes in circulatory concentrations of 17 beta-estradiol or LH and none exhibited estrus or ovulated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Oral progestagen treatment extends the weaning-to-estrus interval (WEI) in weaned sows. Particularly in lower parity sows, this allows recovery from lactational catabolism and improves sow productivity. However, the optimal duration of progestagen treatment in contemporary dam-line sows is unclear. Therefore, sows (n = 749) weaned over consecutive 3-wk periods in June and July and classified as parity 2 and 3 (P2-3); 4, 5, and 6 (P4-6); or parity 7 or higher (P7+) were organized into 2 breeding groups using 1 of 3 strategies: 1) oral progestagen for 2 d before and 12 d after weaning (M14; n = 249); 2) oral progestagen for 2 d before and 5 d after weaning (M7; n = 250); or 3) no progestagen treatment (M0; n = 250). Progestagen (altrenogest) was administered directly into the sow's mouth at a dosage of 6.8 mL (15 mg of altrenogest) daily. Sows were bred using artificial insemination at first detection of estrus after weaning (M0) or altrenogest withdrawal, and every 24 h thereafter, until they no longer exhibited the standing reflex. The WEI for M0 sows was 5.1 +/- 0.1 d. Estrus was recorded sooner (P < 0.001) after withdrawing treatment in M14 than in M7 sows (6.9 +/- 0.1 vs. 7.4 +/- 0.1 d, respectively). More (P < 0.001) M14 sows (88.6 +/- 2.5%) were bred within 10 d of altrenogest withdrawal than M7 (72.8 +/- 2.8%) sows, or within 10 d of weaning in M0 sows (78.8 +/- 2.6%). Reproductive tracts were recovered after slaughter at d 30 or 50 of gestation. For P2-3 sows, ovulation rate (least squares mean +/- 95% confidence interval) in M7 (23.1 +/- 1.0) was greater (P < 0.001) than in M14 (20.7 +/- 1.0) or M0 (19.7 +/- 1.0) sows; no differences were detected in P4-6 and P7+ sows. At d 30, M7 and M14 sows had more (P < 0.01) embryos (16.4 +/- 0.6 and 15.8 +/- 0.4, respectively) than M0 (13.9 +/- 0.5) sows. At d 50 of gestation, number of fetuses in M14 sows (13.6 +/- 0.4) was greater (P < 0.001) than in M0 (11.8 +/- 0.4) and M7 (12.2 +/- 0.3) sows. Use of oral progestagen to delay the return to postweaning estrus for greater than 18 d appears to have potential for improving weaned sow productivity. Given the incidence of high ovulation rates and associated evidence of intrauterine crowding of embryos around d 30 of gestation, the changing dynamics of prenatal loss resulting from longer periods of progestagen treatment may represent an additional production advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号