首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

2.
Abstract. Nitrate leaching from crop rotations supporting organic grain production was investigated from 1997 to 2000 in a field experiment at three locations in Denmark on different soil types. Three experimental factors were included in the experiment in a factorial design: (1) proportion of N2-fixing crops in the rotation (crop rotation), (2) catch crop (with and without), and (3) manure (with and without). Three, four-course rotations were compared, two at each location. The nitrate leaching was measured using ceramic suction cells. Leaching losses from the crop rotation with grass–clover green manure and without catch crops were 104, 54 and 35 kg N ha−1 yr−1 on the coarse sand, the loamy sand, and the sandy loam, respectively. There was no effect of manure application or time of ploughing-in the grass–clover green manure crop on the accumulated nitrate leaching from the entire rotation. Catch crops reduced nitrate leaching significantly, by 30–38%, on the sandy soils. At all locations catch crops reduced the annual averaged nitrate concentration to meet drinking water quality standards in the crop rotation with green manure. On the coarse sand there was a time lag between the onset of drainage and the start of N-uptake by the catch crop.  相似文献   

3.
Abstract. Four management systems combining high and low livestock densities (0.7 and 1.4 livestock units ha−1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (undersown barley – grass–clover – grass–clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years, nitrate leaching, as determined using ceramic suction cups, was higher in the three crops following ploughing of grass–clover than under the barley or grass–clover. Overall, no significant differences in nitrate leaching were observed between the management systems. However, the replacement of the winter wheat crop used in the earlier experimental period (1994–97) by spring oats with catch crops in both the preceding and succeeding winters reduced nitrate leaching compared with the earlier rotation. Increasing the livestock density, which increased manure application by c. 60 kg total N ha−1, increased crop yields by 7 and 9% on average for FYM and slurry, respectively. Yields were 3–5% lower where FYM was used instead of slurry. The experiment confirmed the overriding importance of grassland N management, particularly the cultivation of the ley, in organic dairy crop rotations.  相似文献   

4.
Abstract. The nitrogen (N) conserving effects of Italian ryegrass ( Lolium multiflorum L.) undersown as a nitrate catch crop in spring barley ( Hordeum vulgare L.) were evaluated over a ten-year period in outdoor lysimeters (1.5 m deep, diam. 1 m) with sandy loam soil. Spring barley grown every year received 11.0 or 16.5 g N m−2 before planting or was kept unfertilized. The N was given either as calcium ammonium nitrate or as ammoniacal N in pig slurry. From 1985 to 1989, ryegrass was undersown in the barley in half of the lysimeters while barley was grown alone in the remaining lysimeters. The grass sward was left uncut after barley harvest and incorporated in late winter/early spring. From 1990 to 1994 all lysimeters were in barley only.
Barley dry matter yields and crop N offtakes were not affected by the presence of undersown ryegrass, although grain yields appeared to be slightly reduced. After termination of ryegrass growing, N offtake in barley (grain+straw) was higher in lysimeters in which catch crops had been grown previously.
The loss of nitrate by leaching increased with N addition rate. Regardless of N dressing, ryegrass catch crops halved the total nitrate loss during 1985–1989, corresponding to a mean annual reduction in nitrate leaching of 2.0–3.5 g N m−2. From 1990 to 1994, lysimeters previously undersown with ryegrass lost more nitrate than lysimeters with no history of ryegrass. The extra loss of nitrate accounted for 30% of the N retained by ryegrass catch crops during 1985–1989.
It is concluded that a substantial proportion of the N saved from leaching by ryegrass catch crops is readily mineralized and available for crop offtake as well as leaching as nitrate. To maximize benefits from ryegrass catch crops, the cropping system must be adjusted to exploit the extra N mineralization derived from the turnover of N incorporated in ryegrass biomass.  相似文献   

5.
The effects of an intercrop catch crop (Italian ryegrass) on (i) the amounts and concentrations of nitrate leached during the autumn and winter intercrop period, and (ii) the following crop, were examined in a lysimeter experiment and compared with that from a bare fallow treatment. The catch crop was grown in a winter wheat/maize rotation, after harvest of the wheat, and incorporated into the soil before sowing the maize. A calcium and potassium nitrate fertilizer labelled with 15N (200 kg N ha?1; 9.35 atom per cent excess) was applied to the winter wheat in spring. Total N uptake by the winter wheat was 154 kg ha?1 and the recovery of fertilizer-derived N (labelled with 15N) was 60%. The catch crop (grown without further addition of N) yielded 3.8t ha?1 herbage dry matter, containing 43 kg N ha?1, of which 4.1 % was derived from the 15N-labelled fertilizer. Two-hundred kg unlabelled N ha?1 was applied to the maize crop. During the intercrop period the nitrate concentration in water draining from the bare fallow lysimeters reached 68 mg N1?1, with an average of 40 mg N1?1. With the catch crop, it declined rapidly, from 41 mg N I?1 to 0.25 mg N I?1, at the end of ryegrass growth. Over this period, 110 kg N ha?1 was leached under bare fallow, compared with 40 kg N ha?1 under the catch crop. 15N-labelled nitrate was detected in the first drainage water collected in autumn, 5 months after the spring application. The quantity of fertilizer-N that was leached during this winter period was greater under bare fallow (18.7% of applied N) than when a catch crop was grown (7.1 %). In both treatments, labelled fertilizer-N contributed about 34% of the total N lost during this period. With the ryegrass catch crop incorporated at the time of seedbed preparation in spring, the subsequent maize grain-yield was lowered by an average of 13%. Total N-uptake by the maize sown following bare fallow was 224 kg N ha?1, compared with 180 kg ha?1 with prior incorporation of ryegrass; the corresponding values for uptake of residual labelled N were 3% (bare fallow) and 2% (ryegrass) of the initial application. Following the maize harvest, where ryegrass was incorporated, 22.7% of the previous year's labelled fertilizer addition was present in an organic form on the top 30 cm of lysimeter soil. This compares with 15.7% for the bare fallow intercropping treatment. Tracer analyses showed overall recoveries of labelled N of 91.7% for the winter wheat/ ryegrass/maize rotation and 97% for the winter wheat/bare fallow/maize rotation. The study clearly demonstrated the ecological importance of a catch crop in reducing N-leaching as well as its efficient use of fertilizer in the plant-soil system from this particular rotation. However, the fate of the organic N in the ploughed-down catch crop is uncertain and problems were encountered in establishing the next crop of maize.  相似文献   

6.
Nitrate leaching as affected by long-term N fertilization on a coarse sand   总被引:17,自引:0,他引:17  
Abstract. A field experiment on a coarse sand (1987–92) was conducted with spring barley ( Hordeum vulgare L.), in order to evaluate the effects of increasing N fertilization on nitrate leaching under temperate coastal climate conditions. The N fertilizer levels were 60 and 120 kg N/ha. The experiment was conducted on a 19-year old permanent field trial with continuous spring barley, initiated in 1968, and included treatments with ploughing in autumn or spring, with or without perennial ryegrass ( Lolium perenne L.) as a catch crop undersown in spring. Prior to 1987, the low and high levels of N fertilizer were 70 and 150 kg N/ha, respectively. To calculate nitrate leaching, soil water samples were taken from a depth of 0.8 m using ceramic cups. The average annual nitrate leaching from plots with 60 and 120 kg N/ha was 38 and 52 kg N/ha/y, respectively. The increased leaching associated with increasing fertilizer application was not caused by inorganic N in the soil at harvest, but rather by greater mineralization, mainly in autumn. Growing of a catch crop was relatively more efficient for reducing nitrate leaching than a long-term low fertilizer application. A 50% reduction in N application decreased average yield by 26%, while nitrate leaching decreased by 27%.  相似文献   

7.
Abstract. Leaching of nitrate from a sandy loam cropped with spring barley, winter wheat and grass was compared in a 4-year lysimeter study. Crops were grown continuously or in a sequence including sugarbeet. Lysimeters were unfertilized or supplied with equivalent amounts of inorganic nitrogen in calcium ammonium nitrate (CAN) or animal slurry according to recommended rates (1N) or 50% above recommended rates (1.5N).
Compared with unfertilized crops, leaching of nitrate increased only slightly when 1N (CAN) was added. Successive annual additions of 1.5N (CAN) or 1N and 1.5N (animal slurry) caused the cumulative loss of nitrate to increase significantly. More nitrate was leached after application of slurry because organic nitrogen in the slurry-was mineralized.
With 1N (CAN) the leaching losses of nitrate were in the following order: continuous spring barley undersown with Italian ryegrass < continuous ley of perennial ryegrass < spring barley in rotation and undersown with grass < perennial ryegrass grown in rotation = winter wheat grown in rotation < sugarbeet in rotation < continuous winter wheat < continuous barley < bare fallow.
At recommended levels of CAN (1N), cumulative nitrate losses over the four years were similar for the crops when grown in rotation or continuously. When crops received 1.5N (CAN) or animal slurry, nitrate losses from the crops grown continuously exceeded those from crops in rotation. Including a catch crop in the continuous cropping system eliminated the differences in nitrate leaching between the two cropping systems.  相似文献   

8.
This model analysis of catch crop effects on nitrate retention covered three soil texture classes (sand, loamy sand, sandy loam) and three precipitation regimes in a temperate climate representative of northern Europe (annual precipitation 709–1026 mm) for a period of 43 years. Simulations were made with two catch crops (ryegrass and Brassica) with different rooting depths, and soil N effects in the next spring were analysed to 0.25, 0.75 and 2.0 m depth to represent the catch crop effect on following crops with different rooting depths. Nitrate retained without a catch crop was generally located in deeper soil layers. In the low precipitation regime the overall fraction of nitrate retained in the 0–2.0 m soil profile was 0.23 for the sandy soil, 0.69 for the loamy sand and 0.81 for the sandy loam. Ryegrass reduced leaching losses much less efficiently than Brassica, which depleted nitrate in the 0–0.75 m soil layer more completely, but also in the deeper soil layer, which the ryegrass could not reach. A positive N effect (Neff, spring mineral N availability after catch crop compared with bare soil) was found in the 0–0.25 m layer (that is shallow rooting depth of a subsequent main crop) in all three soil texture classes, with on average 10 kg N/ha for ryegrass and 34 kg N/ha for Brassica. Considering the whole soil profile (0–2.0 m deep rooting of next crop), a positive Neff was found in the sand whereas generally a negative Neff was found in the loamy sand and especially the sandy loam. The simulations showed that for shallow‐rooted crops, catch crop Neff values were always positive, whereas Neff for deeper‐rooted crops depended strongly on soil type and annual variations in precipitations. These results are crucial both for farmers crop rotation planning and for design of appropriate catch crop strategies with the aim of protecting the aquatic environment.  相似文献   

9.
Abstract. Nitrate leaching measurements in Denmark were analysed to examine the effects of husbandry factors. The data comprised weekly measurements of drainage and nitrate concentration from pipe drains in six fields from 1971 to 1991, and weekly measurements of nitrate concentration in soil water, extracted by suction cups at a depth of 1 m, from 16 fields in 1988 to 1993. The soils varied from coarse sand to sandy clay loam.
The model used for analysing the data was: Y = exp (1.136–0.0628 clay + 0.00565N + crop ) D0.416, with R2= 0.54, where Y is the nitrate leaching (kg N/ha per y), clay is the % clay in 0-25 cm depth (%), N is the average N-application in the rotation (kg/ha/y) and D is drainage (mm/y). The most important factor influencing leaching was the crop type. Grass and barley undersown with grass showed low rates of leaching (17-24 kg/ha/y). Winter cereal following a grass crop, beets, winter cereals following cereals and an autumn sown catch crop following cereals showed medium rates of leaching (36-46 kg/ha/y). High rates of leaching were estimated from winter cereals following rape/peas, bare soil following cereals and from autumn applications of animal manure on bare soil (71-78 kg/ha/y). Estimates of leaching from soil of 5, 12 and 20% clay were 68, 44 and 26 kg/ha/y, respectively. Leaching was estimated to rise significantly with increasing amounts of applied N.
The model is suitable for general calculations of the effects of crop rotation, soil type and N-application on nitrate leaching from sandy soil to sandy clay loarns in a temperate coastal climate.  相似文献   

10.
Abstract. The ability of the SOIL-SOILN models to predict nitrate leaching rates from arable land under different fertilizer inputs is tested. The SOIL model predicts water and temperature conditions in a layered soil profile and provides driving variables for the SOILN model which describes nitrogen inputs, transformations and losses. SOILN model predictions were compared with measurements of nitrate leaching at application rates of zero, 100 and 200 kg N per hectare (NO, N100 and N200) in a long-term field experiment in south-west Sweden. Large discrepancies between model predictions and measurements of nitrate leaching were found in some years (up to 100%) and were attributed to important soil processes which are either not included in the model (macropore How) or are difficult to model satisfactorily (partitioning between surface runoff and infiltration during snowmelt periods, crop nitrogen uptake). Nevertheless, long-term mean yearly leaching losses at the different nitrogen application rates (3, 6 and 46 kg per hectare at NO, N100 and N200, respectively) were reasonably well estimated by the model.  相似文献   

11.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

12.
From 1993 to 2001, a maize-vegetable-wheat rotation was compared using either 1) composts, 2) manure, or 3) synthetic fertilizer for nitrogen nutrient input. From 1993 to 1998, red clover (Trifolium pratense L.) and crimson clover (Trifolium incarnatum L.) were used as an annual winter legume cover crop prior to maize production. From 1999 to 2001, hairy vetch (Vicia villosa Roth.) served as the legume green manure nitrogen (N) source for maize. In this rotation, wheat depended entirely on residual N that remained in the soil after maize and vegetable (pepper and potato) production. Vegetables received either compost, manure, or fertilizer N inputs. Raw dairy manure stimulated the highest overall maize yields of 7,395 kg/ha (approximately 140 bushels per acre). This exceeded the Berks County mean yield of about 107 bushels per acre from 1994 to 2001. When hairy vetch replaced clover as the winter green manure cover crop, maize yields rose in three of the four treatments (approximately 500-1,300 kg/ha, or 10-24 bu/a). Hairy vetch cover cropping also resulted in a 9-25 % increase in wheat yields in the compost treatments compared to clover cover cropping. Hairy vetch cover crops increased both maize and wheat grain protein contents about 16 to 20% compared to the clover cover crop. Compost was superior to conventional synthetic fertilizer and raw dairy manure in 1) building soil nutrient levels, 2) providing residual nutrient support to wheat production, and 3) reducing nutrient losses to ground and surface waters. After 9 years, soil carbon (C) and soil N remained unchanged or declined slightly in the synthetic fertilizer treatment, but increased with use of compost amendments by 16-27% for C and by 13-16% for N. However, with hairy vetch cover crops, N leaching increased 4 times when compared to clover cover crops. September was the highest month for nitrate leaching, combining high rainfall with a lack of active cash crop or cover crop growth to use residual N. Broiler litter leaf compost (BLLC) showed the lowest nitrate leaching of all the nutrient amendments tested (P= 0.05).  相似文献   

13.
Seven grassland experiments on sandy and clay soils were performed during a period of 4 years to estimate the nitrogen (N) fertilizer replacement value (NFRV) of concentrated liquid fractions of separated pig slurry (mineral concentrate: MC). The risk of nitrate leaching when applying MC was compared to when applying mineral fertilizers. Grassland yields in 2009–2012 fertilized with MC were compared with grassland fertilized with two mineral fertilizers: granulated calcium ammonium nitrate and liquid ammonium nitrate (LAN). The mineral fertilizers comprised 50% nitrate-N and 50% ammonium-N, and MC comprised 95–100% ammonium-N. Treatment application rates included zero N and three incremental rates of N fertilization. The liquid fertilizers were shallow injected (0–5 cm). The NFRV of MCs was 75% on sandy and 58% on clay soil with granulated ammonium nitrate as reference, and 89% on sandy and 92% on clay soil with LAN as reference. Risk of nitrate leaching after application of MC, measured in residual soil mineral N post-growing season and N in the upper groundwater in the following spring, was equal to that for mineral fertilizers.  相似文献   

14.
Abstract. Each year since 1986 information has been collected about the farming systems at intersections of a nationwide 7 km square grid in Denmark. These management data and corresponding soil analyses were used in the model DAISY to simulate water and nitrogen dynamics. The model was validated with respect to harvested dry matter yield and nitrogen content in the soil. Simulated nitrate leaching from farmland areas from 1 April 1989 to 31 March 1993 was related to precipitation zones, soil type, fertilizer strategies and cropping systems. The mean simulated nitrate leaching for the whole of Denmark was 74 kg N/ha/yr, with a large yearly variation in the period considered. The simulated nitrate leached from soils with a sandy subsoil corresponded to 51% of the applied fertilizer, twice that leached from soils with a loamy subsoil. The application of pig manure resulted in average leaching losses of 105 kg N/ha/yr. The simulated nitrate leaching losses at sites where only artificial fertilizer was applied were in the following order: cereal with undersown grass < crop followed by winter cereal or winter rape < cereal or rape without a catch crop < root crops without a catch crop. Where only artificial fertilizers were applied, the simulated mean annual leaching was 59 kg N/ha from spring barley and 40 kg N/ha from winter wheat. A map of simulated nitrate leaching in Denmark was produced using a Geographical Information System.  相似文献   

15.
We applied digestate generated from the anaerobic digestion of slurry, undigested slurry, or inorganic N (ammonium nitrate) or NPK compound fertilizer to pots of grass and a grass–clover mix grown in two soils. Crop yields were equal or enhanced with digestate, and analysis of soil water showed that there was less potential for loss of nutrients via leaching. Replacing inorganic fertilizer with digestate may therefore maintain grassland productivity but with less impact on the environment.  相似文献   

16.
Grazing of winter forage crops is a common management option used in the dairy industry of New Zealand, particularly in the South Island, where they are used to feed nonlactating, pregnant dairy cows prior to calving. However, there is concern that the large crop yields per hectare grazed, combined with a high stocking density of cows, lead to large amounts of urinary nitrogen (N) deposited on bare, wet soil that, in turn, could lead to large nitrate leaching losses. We report the results of a simulated winter forage grazing event using field lysimeters planted with a kale (Brassica oleracea L.) crop. The effect of sowing a ‘catch crop’ of oat (Avena sativa L.) following the simulated winter forage grazing on nitrate leaching losses from urine applied at different times throughout the winter was measured. A catch crop sown between 1 and 63 days after the urine deposition in early winter reduced N leaching losses from urine patches by ~34% on average (range: 19–49%) over the winter–spring period compared with no catch crop. Generally, the sooner the catch crop was sown following the crop harvest, the greater the uptake of N by the catch crop and the greater the reduction in nitrate leaching losses. The results indicate that sowing of a catch crop following winter crop grazing could be an effective management strategy to reduce nitrate leaching as well as increase the N‐use efficiency of dairy winter forage grazing systems.  相似文献   

17.
The main aim of this study was to compare the N leaching from grass fertilized with 220 kg N ha−1 and grass‐clover pastures receiving no fertilization during three grazing years and a renewal year, in a 4‐year ley rotation. The other aim was to compare the herbage and milk production of these pastures. The study was conducted on a lysimeter field; five lysimeters (size 10 × 10 m) were assigned to each treatment. Automated drinking water outlets for the cows were located on one of the lysimeters on each treatment. The amount of leachate was recorded and composite samples were analysed for total N, NO3‐N, NH4‐N and soluble organic N (SON). The number of grazing cows was adjusted according to the herbage mass production. The amount of milk was measured. The total input of N to the area was 290 and 215 kg N ha−1 year−1 for grass and grass‐clover treatments, respectively. The total N leaching during grazing years was 17 and 9 kg N ha−1 from grass and grass‐clover treatments, respectively. Renewal of the sward increased N leaching in both treatments, up to 60 and 40 kg total N ha−1 in grass and grass‐clover treatments, respectively. During the grazing years 96% of the leached N was in the form of NO3‐N, but during the renewal year the proportion of NO3‐N was lowered to 89% and the rest was in the form of SON. The total amount of N in the surface runoff was 3–5 kg ha−1 year−1. As high N fertilizer rates per application are a common practice in Finland, short‐term grass‐clover pastures can be considered environmentally beneficial when compared with intensively fertilized grass pastures in comparable circumstances.  相似文献   

18.
《Applied soil ecology》2009,41(3):432-446
Insight is needed into how management influences soil biota when sustainable grassland systems are developed. A crop rotation of grass and maize can be sustainable in terms of efficient nutrient use. However, there is lack of information on the effect of such a crop rotation on soil biological quality. Earthworms, nematodes, bacteria and fungi were sampled over three years in a 36 years old experiment. Permanent arable land was compared with permanent grassland and with a ley-arable crop rotation. In the rotation, a period of three years of grassland (temporary grassland) was followed by a period of three years of arable land (temporary arable land) and vice versa. In the first year of arable cropping in the rotation, the number of earthworms was already low and not different from continuous cropping. In the three-year grass ley, the abundance of earthworms returned to the level of permanent grassland in the second year. However, the restoration of earthworm biomass took a minimum of three years. Furthermore, the anecic species did not recover the dominance they had in the permanent grassland. The numbers of herbivorous and microbivorous nematodes in the ley-crop rotation reached similar levels to those in the permanent treatments within one to two years. Although the same holds for the nematode genera composition, the Maturity Index and the proportion of omnivorous nematodes in the temporary treatments remained significantly lower than in their permanent counterparts. Differences in recovery were also found among microbial parameters. In the temporary treatments, bacterial growth rate and the capacity to degrade a suite of substrates recovered in the second year. However, the Community-Level Physiological Profiles in the permanent grassland remained different from the other treatments. Our results suggest that many functions of soil biota that are well established in permanent grassland, are restored in a ley-arable crop rotation. However, due to a reduction in certain species, specific functions of these soil biota could be reduced or lost. The ley-arable crop rotations were intermediate to permanent grassland and continuous arable land in terms of functioning of soil biota (e.g., N-mineralization). In terms of the functional aspects of the soil biota, permanent grassland might be preferable wherever possible. For maize cultivation, a ley-arable crop rotation is preferable to continuous arable land. However, a ley-arable crop rotation is only preferable to continuous arable cropping if it is not practised at the expense of permanent grassland at farm level.  相似文献   

19.
Rothamsted's Woburn Ley-arable experiment, started in 1938 on a sandy loam soil, provides valuable real-world data on the effects of all-arable and ley-arable rotations. In this study, six rotations were compared from 1973 to 2001. Two had 3-year arable “treatment” crops, two had 3-year leys, and two had 8-year leys; the leys being all-grass given fertilizer nitrogen (Ln3 and Ln8), or grass/clover (Lc3 and Lc8). Here, we present the yields of two test crops, winter wheat (1981–2000) followed by spring barley (1982–1991) or winter rye (1997–2001) in each of the six rotations, and their response to four rates of fertilizer N and soil N. From fitted yield/N response curves, we show that maximum wheat yields were least (7.10 t ha−1) in the AB rotation, slightly higher, but not significantly so (7.65 t ha−1) following Ln leys but significantly higher (8.12 t ha−1) following Lc leys. Significantly less fertilizer N (30 kg ha−1) was needed to achieve the higher yields following Lc leys. Yields of the second cereal following the leys were 0.3–0.8 t ha−1 higher than those in the AB rotation; these increases were not statistically significant. However, significantly less fertilizer N, 26–38 kg N ha−1, was required to achieve those yields. There was no difference found between the type of ley. The initial benefit of the Lc leys was short-lived. If leys are to be introduced into mainly arable farming systems, they may need to be subsidized to make them financially viable.  相似文献   

20.
Drained and undrained grassland lysimeter plots were established in 1982 on a clay loam of the Hallsworth series at a long-term experimental site in south-west England. The plots were continuously grazed by beef cattle, and received fertilizer at either 200 or 400 kg N ha-1 per annum to the existing permanent sward, or at 400 kg N ha-1 to a new sward, reseeded to perennial ryegrass following cultivation. Drainage water was monitored at V-notch weirs and sampled daily for the analysis of nitrate-N. Seven years of data are presented (five years for the reseeded swards). On the drained plots a large proportion of the rainfall was routed preferentially down large pores to the mole drains, whilst on the undrained plots, drainage was mainly by surface runoff. The average quantities of nitrate N leached per year were 38.5, 133.8 and 55.7 kg ha-1 from the old sward that received 200 and 400 kg N ha-1, and from the reseed that received 400 kg N ha-1 fertilizer, respectively. Ploughing and reseeding resulted in a two-fold reduction in leaching, except during the first winter after ploughing, and twice as much leaching occurred after a hot, dry summer as after a cool, wet one. Nitrate concentrations in drainage from either drained or undrained plots were rather insensitive to rainfall intensity, such that concentration was a good predictor of nitrate load for a given drainage volume. The drainage volume determined the proportion of the leachable N that remained in the soil after the winter drainage period. Initial (peak) concentrations of nitrate N ranged, on average, from 55 mg dm-3 for the drained old sward that received 400 kg N ha-1 fertilizer, to 12 mg dm-3 for the undrained sward at 200 kg N ha-1 fertilizer input. Concentrations of nitrate N in drainage from similar, unfertilized plots rarely exceeded 1 mg dm-3. The results suggest that manipulating the nitrate supply can lessen leaching and that the route of water through soil to the watercourse determines the maximum nitrate concentration for a given load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号