首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spike (S) glycoprotein of the Miller strain of transmissible gastroenteritis virus (TGEV) was recently cloned and expressed in baculovirus. The recombinant S protein was used as the coating antigen in a competition (blocking) enzyme-linked immunosorbent assay (ELISA) in combination with monoclonal antibodies to the S protein epitope A (conserved on TGEV and porcine respiratory coronavirus [PRCV]) or epitope D (present on TGEV only) to differentiate PRCV- from TGEV-induced antibodies. One set (set A) of 125 serum samples were collected at different times after inoculation of caesarean-derived, colostrum-deprived (n = 52) and conventional young pigs (n = 73) with 1 of the 2 porcine coronaviruses or uninoculated negative controls (TGEV/PRCV/negative = 75/30/20). A second set (set B) of 63 serum samples originated from adult sows inoculated with PRCV and the recombinant TGEV S protein or with mock-protein control and then exposed to virulent TGEV after challenge of their litters. Sera from set A were used to assess the accuracy indicators (sensitivity, specificity, accuracy) of the fixed-cell blocking ELISA, which uses swine testicular cells infected with the M6 strain of TGEV as the antigen source (ELISA 1) and the newly developed ELISA based on the recombinant S protein as antigen (ELISA 2). The sera from set B (adults) were tested for comparison. The plaque reduction virus neutralization test was used as a confirmatory test for the presence of antibodies to TGEV/PRCV in the test sera. The accuracy indicators for both ELISAs suggest that differential diagnosis can be of practical use at least 3 weeks after inoculation by testing the dual (acute/convalescent) samples from each individual in conjunction with another confirmatory (virus neutralization) antibody assay to provide valid and complete differentiation information. Moreover, whereas ELISA 1 had 10-20% false positive results to epitope D for PRCV-infected pigs (set A samples), no false-positive results to epitope D occurred using ELISA 2, indicating its greater specificity. The progression of seroresponses to the TGEV S protein epitopes A or D, as measured by the 2 ELISAs, was similar for both sets (A and B) of samples. Differentiation between TGEV and PRCV antibodies (based on seroresponses to epitope D) was consistently measured after the third week of inoculation.  相似文献   

2.
Five nonneutralizing monoclonal antibodies (MAb) generated to the virulent Miller strain of transmissible gastroenteritis virus (TGEV) and specific for the S protein were characterized. Competition assays between purified and biotinylated MAb indicated that MAb 75B10 and 8G11 mapped near a new subsite, designated V and 2 MAb, 44C11 and 45A8, mapped to a previously designated subsite D. A fifth MAb mapped between subsites V and E. These MAb were tested with 3 previously characterized MAb to subsites A, E, and F in fixed-cell ELISA and cell culture immunofluorescent assays against 5 reference and 9 field strains of TGEV and 2 US strains (ISU-1 and ISU-3) of porcine respiratory coronavirus (PRCV). Subsites A, E, and F were conserved on all TGEV and PRCV strains examined. The 2 MAb to subsite V, 8G11 and 75B10, reacted only with the Miller TGEV strains (M5C, M6, and M60), except that 75B10 also recognized field strain U328. The MAb 11H8 did not react with 4 field strains or the Purdue strains of TGEV. The 2 MAb to subsite D reacted with all TGEV strains examined, but not with 2 US PRCV strains, 2 European PRCV strains, 1 feline infectious peritonitis virus strain, and 1 canine coronavirus strain. Because of this specificity for TGEV, but not PRCV, these latter 2 subsite D MAb may be useful for the development of competition ELISA to differentiate serologically between TGEV and PRCV infections in swine, similar to the currently used European subsite D MAb.  相似文献   

3.
A competition ELISA utilizing a mAb directed towards a peplomer protein epitope common to TGEV, PRCV and related feline and canine coronaviruses is described.  相似文献   

4.
A porcine respiratory coronavirus (PRCV) was inoculated by aerosol into nine hysterectomy-derived and colostrum-deprived pigs at the age of one week. They were killed at different times after inoculation and tissues were sampled for virus isolation and immunofluorescence. Results indicate that virus replicated to high titres in the respiratory tract. Replication mainly occurred in alveolar cells but also in epithelial cells of nasal mucosa, trachea, bronchi, bronchioli, in alveolar macrophages and in tonsils. After primary replication in the respiratory tract, viraemia occurred. Virus also reached the gastrointestinal tract after swallowing. Subsequently, PRCV was observed to replicate in the ileum. The infection spread within a few days from the ileum to the duodenum. Replication in the small intestine remained limited to a few cells located in or underneath the epithelial layer of villi and, or, crypts. The cell type could not be identified. Virus was isolated from mesenteric lymph nodes in all pigs, but immunofluorescence was not observed. Results show that small changes in molecular structure between transmissible gastroenteritis virus and PRCV resulted in important changes in host cell tropism.  相似文献   

5.
A plasmid, pG3BS, containing a cDNA clone from the 5' coding region of the peplomer glycoprotein gene appears to be specific for enteric transmissible gastroenteritis virus (TGEV) strains and for live-attenuated TGEV vaccines. This cDNA probe is used to differentiate porcine respiratory coronavirus (PRCV) isolates from TGEV field and vaccine strains by a slot blot hybridization assay. Probe pG3BS also hybridizes to canine coronavirus (CCV) RNA but does not hybridize to antigenically related feline infectious peritonitis virus (FIPV) RNA. The RNAs of 13 enteric TGEV isolates from the United States, Japan, and England, 4 US-licensed live-attenuated TGEV vaccines, and antigenically closely related CCV were detected by pG3BS. The RNAs of FIPV and 3 US isolates of PRCV did not react with pG3BS but were detected by a TGEV-derived plasmid, pRP3. Pigs infected with either PRCV or TGEV test serologically positive for TGEV antibody by the serum neutralization test. Characterization of the virus circulating in a swine herd by the pG3BS probe will differentiate between an enteric TGEV and a respiratory PRCV infection.  相似文献   

6.
Sixteen isolates of transmissible gastroenteritis virus and one isolate of porcine respiratory coronavirus were characterized using RT-PCR amplification of 4 antigenic subsites in the site A epitope on the TGEV spike gene. The PCR products were digested with restriction enzymes Sau3AI and SspI and the sizes of the fragments were determined. Three different digestion patterns were observed with each enzyme. The recognition site for Sau3AI was missing in 1 isolate, was present in 13 isolates and 3 isolates had 2 sites. PCR-products with a single site had 3 different fragment sizes and the other isolates produced 2 fragments with different sizes. The SspI recognition site was not present in 5 isolates and 12 isolates had a single site that produced 2 fragments of different sizes. Based on the restriction fragment sizes, the 17 isolates were separated into 7 groups. Direct sequencing of the 455 bp nested set fragments demonstrated greater than 96% sequence homology among the 16 isolates and 100% homology in the 4 antigenic subsites in the conserved site A epitope. The groups are discussed in relation to their sequence homology and virulence. In vitro procedures have been developed to identify several porcine enteric coronavirus isolates at the strain level.  相似文献   

7.
A competitive inhibition ELISA was developed to detect non-neutralizing antibodies to the peplomer protein of transmissible gastroenteritis virus (TGEV) in porcine sera using a monoclonal antibody as an indicator. It was demonstrated that field strains of the TGEV-related porcine respiratory coronavirus (PRCV) did not induce this antibody, whereas the Miller strain and field strains of TGEV did. The sensitivity of the competitive inhibition ELISA appeared to be similar to that of the virus neutralization (VN) test. The test enables differentiation of pigs which were previously infected with TGEV or PRCV and which cannot be distinguished by the classical anti-TGEV neutralization test. The present test is useful for selective serodiagnosis.  相似文献   

8.
A porcine respiratory, non-enteric virus which is related to the coronavirus transmissible gastroenteritis virus (TGEV) has been isolated in pigs and in cell culture. The isolate was designated TLM 83. It has become very widespread and enzootic among the swine population in Belgium and in other swine raising countries. It causes an infection of the lungs and appears to spread by aerogenic route. It does not replicate in the enteric tract. The experimental infection in conventional and gnotobiotic pigs in isolation remains subclinical. The infection, either experimental or in the field, results in the formation of antibodies which neutralise the classical enteric TGEV. Based on this relationship, this virus is assumed to be a new TGEV-related porcine respiratory coronavirus or TGEV itself which has totally lost its tropism for the enteric tract.  相似文献   

9.
One-week-old piglets were inoculated with the porcine respiratory coronavirus (PRCV) either intravenously or directly into the lumen of the gastrointestinal tract. Both inoculation routes resulted in the isolation of virus from the caudal small intestine. Viral replication, however, was only observed upon inoculation into the digestive tract in quantities of greater than or equal to 10(3) TCID50. Replication remained limited to a few unidentified cells located in or underneath the epithelial layer at villus- or crypt-sites. Virus was excreted in the faeces for several days but infection of the respiratory tract occurred rarely in the same pigs. The results of this study indicate that small changes in molecular structure between PRCV and transmissible gastroenteritis virus have resulted in important changes in host cell tropism.  相似文献   

10.
A respiratory variant of transmissible gastroenteritis virus (TGEV), designated PRCV-Ind/89, was isolated from a swine breeding stock herd in Indiana. The virus was readily isolated from nasal swabs of pigs of different ages and induced cytopathology on primary porcine kidney cells and and on a swine testicular (ST) cell line. An 8-week-old pig infected oral/nasally with the respiratory variant and a contact pig showed no signs of respiratory or enteric disease. These pigs did not shed virus in feces but did shed the agent from the upper respiratory tract for approximately 2 weeks. Baby pigs from 2 separate litters (2 and 3 days old) also showed no clinical signs following oral/nasal inoculation with PRCV-Ind/89. In a third litter, 5 of 7 piglets (5 days old) infected either oral/nasally or by stomach tube developed a transient mild diarrhea with villous atrophy. However, virus was not isolated from rectal swabs or ileal homogenates of these piglets, and viral antigen was not detected in the ileum by fluorescent antibody staining even though the virus was easily recovered from nasal swabs and lung tissue homogenates. Swine antisera produced against PRCV-Ind/89 or enteric TGEV cross-neutralized either virus. In addition, an anti-peplomer monoclonal antibody, 4F6, that neutralizes TGEV also neutralized the PRCV-Ind/89 isolate. Radioimmunoassays with a panel of monoclonal antibodies indicated that the Indiana respiratory variant and the European PRCV are antigenically similar.  相似文献   

11.
A serodiagnostic ELISA utilizing the recombinant nucleoprotein (rN protein) of transmissible gastroenteritis virus (TGEV) was developed, and evaluated by examining a panel of 141 virus neutralization (VN) positive and 101 negative sera. The rN protein-based ELISA (rnELISA) appeared to be highly sensitive and specific (98.6% and 98.0%, respectively) when it was compared to the VN test. The result was similar to that of an ELISA based on purified viral antigens with showing good correlation (R=0.829). No cross-reaction was detected with antisera against porcine epidemic diarrhea virus, hog cholera virus, type A rotavirus, pseudorabies virus and swine vesicular disease virus in this ELISA. The rnELISA can be an alternative for the diagnosis of TGE with a great advantage in antigen preparation.  相似文献   

12.
《畜牧与兽医》2016,(5):31-38
为建立一种检测猪传染性胃肠炎病毒(TGEV)血清抗体的间接ELISA方法,将TGEV的N基因片段克隆到p ET-28a载体中,转化至大肠杆菌BL21感受态细胞中进行诱导表达,并对表达的蛋白进行Western-blot鉴定。以纯化的重组N蛋白作为包被抗原,最终建立了检测TGEV抗体的间接ELISA方法。该ELISA方法与猪流行性腹泻病毒(PEDV)、猪瘟病毒(CSFV)、猪繁殖与呼吸系统综合征病毒(PRRSV)、口蹄疫病毒(FMDV)、猪圆环病毒2型(PCV2)等5种病毒阳性血清不发生交叉反应,表明建立的ELISA方法具有良好的特异性。本研究可为猪传染性胃肠炎的流行病学调查、诊断与防控奠定基础。  相似文献   

13.
Pigs were inoculated with various strains of transmissible gastroenteritis virus (TGEV) or with porcine respiratory coronavirus (PRCV), and antigenic site-specific antibody responses were compared. A blocking-ELISA was used to study to what extent antibodies in convalescent sera interfered with the binding of monoclonal antibodies (MAB) 57.16 or 57.110 to the attenuated TGEV/Purdue virus. Monoclonal antibody 57.16 is directed against the A site on the peplomer, neutralizes virus, and recognizes TGEV and PRCV. Monoclonal antibody 57.110 is directed against the X site on the peplomer, but does not neutralize virus, and recognizes only TGEV. Antibodies directed against TGEV and PRCV could be detected in a blocking ELISA, using MAB 57.16 as a conjugate. Antibodies directed against both viruses were detectable as early as 1 week after inoculation. Antibody titers correlated well with those in a virus-neutralization test. Antibodies against TGEV could be detected in a blocking ELISA, using MAB 57.110 as a conjugate. Such antibodies were not induced by a PRCV infection. In the blocking ELISA, using MAB 57.110 as a conjugate, antibodies were detectable as early as 2 weeks after inoculation. There was a significant difference between antibody titers reached after infection with various TGEV strains, however. This difference is ascribed to a variation of the antigenic site defined by MAB 57.110 in TGEV strains. Conditions for a differential test for TGE serodiagnosis, and for serologic discrimination between TGEV- and PRCV-infected pigs, are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
为建立检测猪乳汁中抗猪染性胃肠炎病毒(TGEV)Ig A抗体的间接ELISA方法,本研究以TGEV重组N蛋白为包被抗原,以辣根过氧化物酶标记羊抗猪Ig A为检测抗体,并采用方阵法确定包被抗原和待检乳汁的最佳工作浓度,对各种反应条件进行优化,建立了猪乳汁中TGEV Ig A抗体的间接ELISA检测方法。该方法检测稀释160倍的阳性乳清仍呈阳性;与猪流行腹泻和猪轮状病毒感染阳性乳清无交叉反应;批内和批间变异系数均小于10%。利用建立的ELISA方法与间接免疫荧光方法分别对134份临床样品进行检测,阳性检出率分别为58.2%(78/134)和59.7%(80/134),总符合率为85.6%。本研究建立的检测方法能够有效评估乳汁中TGEV Ig A抗体的水平。  相似文献   

15.
《畜牧与兽医》2014,(11):19-23
以纯化的猪传染性胃肠炎病毒(TGEV)作为抗原免疫BALB/c小鼠,经3次免疫后,通过聚乙二醇方法进行融合,利用有限稀释法在HAT培养基上筛选杂交瘤细胞,共获得12株既能稳定生长并可以分泌特异性抗TGEV的单克隆抗体的杂交瘤细胞系,分别命名为8D2、4H4、5D6、7H10、4C3、9G1、3A2、8G1、5G6、2D7、4D6、6B10。间接ELISA、Western blot、间接免疫荧光结果表明,获得的12株单抗能特异性识别TGEV,通过间接ELISA做病原检测,显示12株单抗与猪流行性腹泻病毒(PEDV)和猪轮状病毒(PrV)不发生交叉反应。经抗体亚类鉴定,该12株单克隆抗体均为IgG2b。12株抗TGEV的单抗制备成功,为猪传染性胃肠炎病原特性研究和病原快速检测提供了物质基础。  相似文献   

16.
Swine exposed to attenuated transmissible gastroenteritis virus had higher virus-neutralizing antibody titers than did swine exposed to virulent virus. The cellular response, measured by the direct leukocyte migration-inhibition (LMI) procedure, was greater in swine exposed to virulent virus than in swine exposed to the attenuated virus. Leukocytes from exposed swine were inhibited more in the LMI procedure in the presence of the homologeous sensitizing antigen than in the presence of the heterologous viral antigen. The humoral response measured by virus neutralizing reached a peak 21 days after exposure, and the cellular response measured by LMI reached a peak 28 days after exposure.  相似文献   

17.
Monospecific antisera were prepared in rabbits against canine coronavirus (CCV) and transmissible gastroenteritis virus of pigs (TGEV), and in 24 pigs and 3 cats against TGEV alone. Neutralizing antibody titres were higher for the immunizing than the heterologous virus, although cross-neutralization usually was detected. This confirmed that CCV and TGEV are distinct, but antigenically related coronaviruses. In sera from 41 dogs, CCV-neutralizing titres were on average 2.7 fold higher than TGEV-neutralizing titres, suggesting that CCV was the causal agent. Sera from 29 cats in colonies with feline infectious peritonitis (FIP) and known to contain TGEV-neutralizing antibody, were found to have titres 12.3 fold higher against CCV. The FIP virus (FIPV) is probably more closely related to CCV than TGEV as judged by antigens involved in virus neutralization.Antisera to two isolates of bovine coronavirus, three isolates of haemagglutinating encephalomyelitis virus, seven strains of avian infectious bronchitis virus and the 229E strain of human coronavirus all failed to neutralize CCV and TGEV. Thus CCV, TGEV and probably FIPV fall into a group of antigenically related agents, separable from other members of the family Coronaviridae, by both virus neutralization and immunofluorescence tests.  相似文献   

18.
Antibodies to a transmissible gastroenteritis virus (TGEV)-related coronavirus have been demonstrated in mink sera by indirect immunofluorescence, peroxidase-linked antibody assays and immunoblotting. This is the first serological evidence of a specific coronavirus infection in mink. The putative mink coronavirus (MCV) seems to be widespread in the Danish mink population with a prevalence approaching 100%. Analysis by immunoblotting has shown that MCV is closely related to TGEV by the spike (S), matrix (M) and nucleoprotein (N) polypeptides. Furthermore, antibodies to MCV also cross-reacted with N and M polypeptides of porcine epidemic diarrhea virus (PEDV). Thus MCV may occupy an intermediate position between the TGEV group of coronavirus and PEDV. The possibility that MCV may be associated with syndromes of acute enteritis in preweaning mink is discussed.  相似文献   

19.
20.
The indirect fluorescent antibody test was modified to provide a rapid technique for the detection, screening and titration of antibodies to transmissible gastroenteritis of pigs. Large numbers of slides containing transmissible gastroenteritis antigen were prepared by planting mixtures of infected and uninfected swine testicular cells onto multiwelled teflon-coated slides. After overnight incubation, about one-half of the cells in each well were infected which provided contrast to aid in detecting specific fluorescence in the presence of varying degrees of background staining. Following fixation, antigen slides were stored at -20 degrees C until used. The indirect fluorescent antibody test was compared to the virus neutralization test in both the screening and titration of swine sera containing transmissible gastroenteritis antibodies. The test was found to be sensitive and reliable and to offer certain advantages over the virus neutralization test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号