首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Field studies were conducted to determine the potential for intraspecific responses in crop growth and grain yield of 20 soybean cultivars to enhanced ultraviolet-B (UV-B, 280–315 nm) radiation. The supplemental UV-B radiation was 5.00 kJ m−2, simulating a depletion of 20% stratospheric ozone at Kunming (25°N, 1950 m). Out of the 20 soybean cultivars tested, 17 and 15 showed significant change in plant height at 80 DAP (days after planting) and ripening stages, respectively. Sensitivity in plant height was greater at 80 DAP than at ripening. The plant height of 3 cultivars increased, and that of 17 cultivars decreased. Under UV-B radiation, LAI (leaf area index), biomass and grain yield decreased, respectively. The greatest percent decrease was 95.7, 93.9 and 92.8, respectively. RI (response index) was the sum of percent change in plant height at ripening, LAI, biomass and grain yield. The results showed that all 20 soybean cultivars had a negative RI, indicating inhibition by UV-B radiation on soybean growth. The RI of 6 tolerant cultivars was higher than −163.1 and 5 out of 6 originated from south China (low latitude). The RI of the most tolerant cultivars, Yunnan 97801, was −72.4. Meanwhile, the RI of 5 sensitive cultivars was lower than −256.9 and 4 out of the 5 originated from north China (high latitude). The RI of the most sensitive cultivar, Huanxianhuangdou, was −295.7. These UV-B tolerant cultivars identified in this study might be useful in breeding programs.  相似文献   

2.
《Field Crops Research》1999,63(1):79-86
This paper explores the possibility of improving yields of spring wheat (Triticum aestivum) by using plastic film mulching. Field experiments compared three mulching treatments viz. for 20 d (M1), 40 d (M2), and 60 d (M3) after sowing (DAS), with a non-mulch control (CK). Mulching increased temperature and moisture in the upper 5 cm of soil, and shoots emerged 8 d earlier than in CK. Mulching also increased number of tillers, length of the growing period, spikelet and grain numbers per spike, and the duration from flowering to harvest. In the mulched treatments, photosynthesis rate and soluble sugar content were higher in the vegetative period, but soluble sugar content was lower in the grain filling period relative to CK. Grain yield following 20 d mulching was greatest (8207 kg ha−1), and decreased gradually as the mulching period increased (7847 and 6702 kg ha−1 for M2 and M3, respectively). Plastic film removed after 20 d maximizes yield and minimizes soil pollution.  相似文献   

3.
Soil acidity and Al toxicity are highly extended in agricultural lands of Chile, especially where wheat is widely sown. To evaluate quantitatively the response of wheat biomass and its physiological determinants (intercepted radiation and radiation use efficiency) to Al toxicity, two field experiments were conducted in an Andisol in Valdivia (39°47′S, 73°14′W), Chile, during the 2005–2006 and 2006–2007 growing seasons. Treatments consisted of a factorial arrangement of: (i) two spring wheat cultivars with different sensitivity to Al toxicity (the sensitive cultivar: Domo.INIA and the tolerant cultivar: Dalcahue.INIA) and (ii) five exchangeable Al levels (from 0 to 2.7 cmol(+) kg−1) with three replicates. Crop phenology and intercepted radiation (IR) were registered during the entire crop cycle, while 10 samples of above-ground biomass were taken at different stages between double ridge and maturity. Both biomass and leaf area index (LAI) were recorded in these 10 stages. Radiation use efficiency (RUE) was calculated as the slope of the relationship between accumulated above-ground biomass and accumulated photosynthetically active radiation intercepted by the canopy (IPARa). Crop phenology was little affected by soil Al treatments, showing only up to 17 days delay in the Al-sensitive cultivar under extreme Al treatments. Above-ground biomass at harvest was closely associated (R2 = 0.92) with the crop growth rate but no relationship (R2 = 0.14) was found between the crop cycle length. IPARa explained almost completely (R2 = 0.93) the above-ground biomass reached by the crop at harvest under the wide range of soil Al concentrations explored in both experiments. On the other hand, a weaker relationship was found between above-ground biomass and RUE. The effect of soil Al concentration on IPARa was mainly explained by LAI as a single relationship (R2 = 0.93) between IR (%) and LAI at maximum radiation interception showing a common light attenuation coefficient (k = 0.33).  相似文献   

4.
《Field Crops Research》2001,72(3):197-210
The effect of tillage system, crop rotation and nitrogen (N) fertilization rates on the quality of hard red spring wheat (Triticum aestivum L.) was studied over a 6-year period under rainfed Mediterranean conditions. Grain yield, test weight, protein content and alveogram parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio; G: swelling index) were analyzed. Tillage treatments included no tillage (NT) and conventional tillage (CT). Crop rotations were wheat–sunflower (Helianthus annuus L.) (WS), wheat–chickpea (Cicer arietinum L.) (WCP), wheat–faba bean (Vicia faba L.) (WFB), wheat–fallow (WF) and continuous wheat (CW). Nitrogen fertilizer rates were 50, 100 and 150 kg N ha−1 on a Vertisol (Typic Haploxerert). A split–split plot design with four replications was used. Weather conditions over the study years strongly influenced wheat yield and quality. Test weights rose considerably with yield and increased rainfall during the filling period, and fell slightly as N rates increased. Grain protein content increased with rainfall in the month of May (when grain protein accumulation occurs) up to a maximum of 80 mm. Grain protein content peaked at average mean temperatures of around 26–27°C. Protein content and alveogram parameter also improved under CT, following a prior legume crop and with rising N fertilizer rates. Alveogram parameters rose with protein content, although the P/L ratio showed greater imbalance. N fertilizer proved to be a key factor in determining bread-making quality, and the best strategy available to the farmer for optimizing wheat quality. However, the influence of weather conditions and soil residual N should be borne in mind when deciding on the additional fertilizer N to be used as a top dressing with a view to increasing yield and, particularly, enhancing wheat protein content and bread-making quality.  相似文献   

5.
The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. Between the years 2010–2013 a new strain of this pathogen(Warrior/Ambition),against which the present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens cereal production in most of Europe. The search for sources of resistance to this strain is proposed as the most efficient and safe solution to ensure high grain production. This will be helped by the development of high performance and low cost techniques for field phenotyping. In this study we analyzed vegetation indices in the Red,Green, Blue(RGB) images of crop canopies under field conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in comparison to other field measurements including the Normalized Difference Vegetation Index(NDVI), leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield components and agronomic parameters in relation to grain yield and disease severity.RGB-based indices proved to be accurate predictors of grain yield and grain yield losses associated with yellow rust(R2= 0.581 and R2= 0.536, respectively), far surpassing the predictive ability of NDVI(R2= 0.118 and R2= 0.128, respectively). In comparison to potential yield, we found the presence of disease to be correlated with reductions in the number of grains per spike, grains per square meter, kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater in later heading varieties. The combination of RGB-based indices and days to heading together explained 70.9% of the variability in grain yield and 62.7% of the yield losses.  相似文献   

6.
Water resources are limited for irrigation worldwide; therefore, there is a need for water-saving irrigation practices to be explored. Partial root-zone drying (PRD) is a new water-saving irrigation strategy being tested in many crop species. Experiments were conducted in potato (Solanum tuberosum L. cv. Folva) under open field conditions in 2004 and under a mobile rainout shelter in 2005. Two subsurface irrigation treatments were studied: full irrigation (FI) receiving 100% of evaporative demands, 50.1 and 201 mm of irrigation water in the 2 years, to keep it close to field capacity; and PRD, which received 21.7 and 140 mm of irrigation in 2004 and 2005 respectively. Due to rain in 2004, the PRD treatment was imposed over a short period only during the late tuber filling and maturing stages. In 2005, the PRD treatment was imposed during the whole period of tuber filling and tuber maturation. The PRD treatment was shifted from one side to the other side of potato plants every 5–10 days. Especially in 2005 it was apparent that stomatal conductance was generally lower in the PRD than in the FI plants, whereas leaf water potential tended to be lower in only a few instances. During the treatment period, plants were harvested five times, and no significant difference was found between the treatments in leaf area index, top dry mass and tuber yield. At final harvest, tubers were graded based on size into four classes C1–C4, of which the yield of the important marketable class (C2) was significantly higher (20%) in the PRD than in the FI treatment. Compared with FI, the PRD treatment saved 30% of irrigation water while maintaining tuber yield, leading to a 61% increase of irrigation water use efficiency. The limited data of 2004 support these results. In summary, PRD is a promising water-saving irrigation strategy for potato production in areas with limited water resources.  相似文献   

7.
Under field conditions, phosphorus (P) deficiency reduces wheat yield by affecting different yield components. However, the physiological strategies by which wheat genotypes with different yield structures respond to low-P stress are not clear. In the present study, we investigated tiller, floret, and root biomass, and P uptake and remobilization at two levels of P under field conditions in three winter wheat genotypes with different yield structures and P-efficiencies. Results showed that P-efficient cultivars CA9325 and ND139 got higher yield and total P accumulation than P-inefficient ND3291 at low-P, but not at normal P treatment. However, both the P-efficient wheat cultivars tend to have the same advantageous yield components at both high P and low-P stress. CA9325, a large-eared genotype, developed more fertile florets, and therefore had more grains at low-P stress. Increasing the number of grains formed a large sink for P demand during the grain-filling stage. Correspondingly, this genotype developed large roots for sustaining post-anthesis P uptake. ND139, a multi-eared genotype, developed many more tillers at low-P stress, and formed more ears at maturity. P from infertile tillers was probably reutilized by the surviving tillers to ensure floret development. Correspondingly, the contribution of pre-anthesis P uptake in ND139 and subsequent remobilization of P to the grains was higher. It was found that larger root rather than higher root activity was the determinant factor in efficient pre-anthesis P uptake in ND3291 and efficient post-anthesis P uptake in CA9325. It is concluded that increasing wheat yield at low soil P availability can be realized by either increasing ears per plant or increasing grains per ear through crop management or breeding.  相似文献   

8.
《Field Crops Research》1996,48(1):47-55
Phenological development, shoot dry matter production, grain yield and yield components of rice were examined in relation to drought occurring at various stages of growth. Rice was sown three or four times at three-week intervals in the field in each of two years, and performance in three stress trials was compared with that in corresponding irrigation trials, with the aim of quantifying the response of the crop to water stress of 23–34 days' duration developing at different growth stages. When drought occurred during vegetative stages, it had only a small effect on subsequent development and grain yield. The reduction in yield of up to 30% was due to reduced panicle number per unit area in one trial, and reduced number of spikelets per panicle in another. The effect of water stress on yield was most severe when drought occurred during panicle development. Anthesis was delayed, the number of spikelets per panicle was reduced to 60% of the irrigated control and the percentage of filled grains decreased in one crop to zero. This decrease in grain yield to less than 20% of the control was associated with low dry matter production during the drought period as well as during the recovery period following the drought. When drought occurred during grain filling, the percentage of filled grains decreased to 40% and individual grain mass decreased by 20%. The effect of stress was also related to its severity during grain filling. Stress at this stage hastened maturity. The results suggest that variation in yield components due to water availability is related to the variation in dry matter production at particular growth stages. Results of a supplementary shading experiment show that the relationship between spikelet number per panicle or single grain mass and crop growth rate was the same, whether growth rate was varied by availability of soil water or solar radiation. Filled-grain percentage, however, was more sensitive to drought stress than shading when comparison was made at a similar crop growth rate.  相似文献   

9.
Non-leaf green organs of wheat plants may have significant photosynthetic potential and contribute to grain yield when the plants are subjected to stress at late growth stages. Canopy structure, change of green non-leaf organ area (e.g., ear, peduncle, sheath), the proportion of green non-leaf organs area to total green area and the contribution proportion from different organs’ photosynthate to grain yield in winter wheat (Triticum aestivum L.) were studied at Wuqiao Experiment Station of China Agricultural University, Hebei, China, in 2001-2002 and 2002-2003 using two winter wheat cultivars, Shijiazhuang8 (SJZ-8) and Lumai21 (LM-21). Four irrigation treatments used were W0 (no water applied during spring), W1 (750 m3 ha−1 water applied at elongation), W2 (1500 m3 ha−1 applied 50% at elongation and 50% at anthesis) and W4 (3000 m3 ha−1 applied 25% at upstanding, booting, anthesis and grain filling), respectively. Results showed that the area of top three leaf blades decreased and the proportion of green non-leaf organ area to the total green area at anthesis increased with the decreasing of water supply. Root weight increased in the 0-100 cm soil layer and decreased in the 100-200 cm layer when water supply increased, suggesting reducing irrigation enhanced root weight in deep soil layer. The photosynthetic contribution of non-leaf organs above flag leaf node to grain yield increased with decreasing water supply, and was significantly higher than that of the flag leaf blade contribution. Winter wheat grain yield increased, but water use efficiency (WUE) decreased, with increase in water supply. Higher light transmission ratio in the canopy after anthesis was achieved with smaller size and high quality top leaf blades, higher grain-leaf ratio and larger proportion of green non-leaf area, which lead to higher canopy photosynthetic rate and WUE after anthesis. Irrigation of 1500 m3 ha−1 applied in two parts, 750 m3 ha−1 applied at elongation and another 750 m3 ha−1 applied at anthesis, was the best irrigation scheme for efficient water use and for high yield in winter wheat.  相似文献   

10.
Numerous studies have tried to understand and model bubble growth inside dough. Experimental studies are inconvenienced by the methods’ inability to capture the dynamic phenomena. In this paper, a versatile experimental method was developed to allow for macroscopic expansion of wheat dough. The study evaluates expansion of a dough disk under varying: moisture content (40, 41, 42, 43, and 44% wb), leavening acid concentration (30, 40, and 50% db), pressure schemas, pressurizing gas (compressed air and CO2), and lubrication (Teflon® film coating and Pam® aerosol lubricant). Dough expansion increased 22.6% by increasing moisture content from 40 to 44%. Increased baking powder formulation (40% db) was used to enhance initial growth conditions and CO2 production. ‘Pressure pulse’ and ‘pressure vacuum methods’ added pressurization alternatively with full vacuum. The former method included a rest period before vacuum application, and increased expansion by 10.8%. Teflon® and Pam® reduced friction between the dough and acrylic plate and increased the final expansion by 14.7% compared to no lubricant following the ‘standard pressurization method’. ‘Pressure pulse’ and ‘pressure vacuum’ experiments decreased expansion by 28.4 and 38.2%, respectively compared to ‘standard pressurization’ while using Teflon® and Pam®.  相似文献   

11.
Unpredictable temperatures and rainfall associated with climate change are expected to affect wheat (Triticum aestivum L.) production in various countries. The development of climate-resilient spring wheat cultivars able to maintain grain yield and quality is essential to food security and economic returns. We tested 54 CIMMYT spring bread wheat genotypes, developed and/or released over a span of 50 years, in the field for two years under optimum sowing dates, as well as using two delayed sowing dates to expose crops to medium and severe heat-stress conditions. The grain yield and yield components were severely affected as the heat-stress increased. Two contrasting groups of 10 lines each were identified to determine the effect of heat-stress on bread-making quality. The first set included entries that produced high yields in optimal conditions and maintained higher yields under heat-stress (superior-yielding lines), while the second set included genotypes that did not perform well in the environment with high temperature (inferior-yielding lines). We identified genotypes exhibiting bread-making quality stability, as well as the quality traits that had higher correlation with the loaf volume in the environment without stress and under heat-stress. Of all the quality traits tested, dough extensibility (AlvL) and grain protein content had a significant influence in heat-stress adaptation. Most of the lines from the superior-yielding group were also able to maintain and even improve quality characteristics under heat-stress and therefore, could be used as parents in breeding to develop high-yielding and stable quality wheat varieties.  相似文献   

12.
The breeding of winter wheat (Triticum aestivum L.) for resistance to major fungal diseases has been a priority over the last 15 years in France. During this period, integrated low-input strategies have been developed for winter wheat, to cope with falling grain prices and growing environmental concerns. We investigated the interactions between genotype and management for disease and lodging intensities, and analysed their effects on yield within an integrated crop management (CM) context.

A multi-environment experimental network (13 locations, studied in three seasons, between 1999–2000 and 2001–2002) comprising several combinations of cultivars and CM systems was carried out. Four rule-based CM plans were defined, with a decrease in input level from CM1 (a high-input CM plan designed to maximise the yield of a given cultivar) to CM4 (a low-input system with no fungicide protection, no plant growth regulator applications, a sowing density 40% lower than for CM1, and 90 kg ha−1 less N fertiliser than for CM1). Cultivars were clustered into three groups (cultivar type (CT) CT1–CT3), according to their scores for resistance to diseases, for the analysis of yield, whereas the resistance cultivar rating (CR) for each disease and for lodging was considered for the analysis of disease and lodging intensities.

For all diseases, CM had a significant effect (P<0.0001), with disease intensity increasing from CM1 to CM4, whereas CR had a negative effect (P<0.005). An interaction between CR and CM was also detected for all diseases (P<0.005) except eyespot. Lodging intensity decreased significantly from CM1 to CM4 (P<0.0001), and significant increases in lodging resistance score (P<0.0001) were not associated with a genotype by management interaction.

Lastly, yield was significantly affected by CM (P<0.0001), CT (P<0.0003), and CM by CT interaction (P=0.0023). Cultivar ranking differed as a function of CM for yield, demonstrating that breeding programs focusing on cultivar evaluation in high-input environments do not result in the selection of cultivars suited to low-input environments.  相似文献   


13.
For adapted cultivars under normal crop densities, biological yield is largely determined by the pool of available resources, e.g. water, nutrients and photosynthetically active radiation, while the nature and intensity of intraspecific competition plays an important role in determining the magnitude of harvest index (HI). Water deficits can drastically reduce the HI from its genetic potential to zero. This study was conducted to determine the effect of drought-weighted intraspecific competition on the HI and, consequently, the grain yield in spring wheat populations along a natural moisture gradient in northwestern China. Along the natural moisture gradient (annual mean rainfall decreased 328→204→185 mm per year, supplemented with 70 mm of irrigation), culm size inequality (as measured by the Gini coefficient of above-ground biomass per culm) always increased, and Lorenz curves were more concave. HI decreased significantly in 1999 (0.364→0.345→0.307) and 2000 (0.341→0.303→0.251). There was a significant negative correlation between the Gini coefficient and the HI of spring wheat along the moisture gradient (R2=0.92, P<0.01). These results suggested that size hierarchies in spring wheat populations are closely correlated with the water regime in the field, and that under greater drought stress there are relatively more smaller plants with lower HI (size-dependent reproductive allocation). Size inequality is an index of competitive status in plant populations under stress environments. Agriculturally, greater size inequality may result in a competitive cost for energy and photosynthetic products, in other words, growth redundancy, which is detrimental to reproductive allocation and consequently, grain yield. The results support the view that stand uniformity in field crops is an important mechanism for increasing grain yield.  相似文献   

14.
Paddy and Water Environment - System of rice intensification (SRI) together with appropriate nutrient management holds promise in increasing rice productivity with micronutrient enriched grains....  相似文献   

15.
The effects of one severe winter‐grazing of lucerne were studied over 3 years in an experiment in the Ebro Valley, Spain. In this region the crop is harvested six to seven times per season and winter grazing is a traditional practice. On average, winter‐grazing reduced the yield at the first harvest in spring by 200 kg dry matter (DM) ha?1. This limited yield reduction of 0·06 was accompanied by an increase in the proportion of lucerne in the herbage DM from 0·54 to 0·62, a reduction in the proportion of weeds from 0·39 to 0·36, and a reduction in the proportion of dead material from 0·06 to 0·02. The crude protein concentration and the in vitro DM digestibility increased by 20 g kg?1 DM and 0·03, respectively. The traditional practice, i.e. of grazing lucerne with sheep once in the winter season, results in only a limited reduction in yield in the spring. In addition, the spring crop has a higher nutritive value.  相似文献   

16.
Antitranspirants (AT) were applied to greenhouse, field research plots and commercial plantings of Norgold Russet potato plants. In the greenhouse AT (Folicote and Vapor Gard) reduced water uptake by plants by 20–40%. In field trials at the Texas Agricultural Experiment Station, Halfway, similar concentrations increased yield of Norgold Russet potatoes by 21–45 cwts per acre (2352–5040 kg/ha). In a commercial trial on 20 acres of potatoes, 2% Folicote applied 5 and 3 weeks prior to vine kill increased total yield by 47 cwts per acre (5264 kg/ha) and increased yield of premium grade potatoes by 100%. Gross crop value at harvest was increased $500 per acre ($1125/ha). Significantly higher soil moisture levels existed in soils of treated plots between irrigations.  相似文献   

17.
《Field Crops Research》1998,57(3):265-276
The grain quality of wheat is influenced by the protein content, which in turn depends on environmental conditions and cropping practices. We carried out a 3-year field study in a rainfed Mediterranean region on the effects of tillage, crop rotation and nitrogen fertilization on the grain quality of hard red spring wheat (Triticum aestivum) in terms of protein content, test weight and alveogram indices. Tillage treatments were no tillage (NT) and conventional tillage (CT). Crop rotations were wheat–sunflower (Helianthus annus L.) (WS), wheat–chickpea (Cicer arietinum L.) (WCP), wheat–fababean (Vicia faba L.) (WFB), wheat–fallow (WF) and continuous wheat (CW). Fertilizer nitrogen was used at three different rates: 50, 100 and 150 kg N ha−1. A split–split plot design with four replicates was used. Grain protein content was found to be inversely proportional to rainfall during the growing season. The tillage method was also found to affect grain protein content, test weight and some grain quality indices. Through its effect on moisture and nitrate in the soil. The crop rotations that included a legume (WCP and WFB) had marked effects on wheat quality. The increased grain protein content and resulted in improved rheological properties of the dough (viz. a higher alveogram index and a more balanced tenacity/extensibility ratio). However, no differences due to N dilution in the plant were observed in the wettest year studied, which was also the highest yielding. Increasing the fertilizer N rate increased the grain protein content; this variable had the most marked influence on grain quality indices, though in the year that gave the highest yield the N dilution effect was observed. The many significant interactions among experimental variables reveal a close relationship among grain yield, protein content, grain quality and the wheat growth conditions. Specifically, the amount of rainfall and its distribution in the growing season strongly influenced N availability and uptake by the crop, as well as wheat-grain quality indices.  相似文献   

18.
An established sward of binary mixtures of meadow fescue (Festuca pratensis) and white clover (Trifolium repens) (either AberHerald, Grasslands Huia or Sandra) was subjected to (A) no further defoliation, (B) a defoliation in late September or (C) a defoliation in late October after four harvests had been taken during the grazing season. About a tonne of dry matter (DM) was removed by the autumn defoliations. There were two levels of nitrogen application in spring, either 0 or 90 kg ha?1. The development of grass and clover morphology and population sizes from early autumn until the first harvest the following year was followed by regular sampling of the above-ground material. Stolons were analysed for total non-structural carbohydrates (TNCs), and the temperature at stolon level was continuously recorded. There were no interactions between autumn defoliation, clover cultivar or nitrogen treatments on any of the parameters studied. White clover growing-point numbers and stolon morphological characteristics were reduced in size during the winter and did not recover during the spring. A defoliation in late September resulted in the greatest reduction, whereas there were no differences between the other two treatments. The grass tiller population increased from early autumn until the last sampling occasion in May, but both autumn defoliations resulted in a smaller increase. Defoliation in late September had the greatest impact. The TNC content of white clover stolons fell from about 350 g kg?1 to 150 g kg?1 DM from late autumn until late April. There were small differences between the treatments, but a defoliation in late September resulted in a significantly lower level in late autumn. The temperature amplitude at stolon level was consistently greater in plots defoliated in late September. Total DM harvested in spring was 4367, 2564 and 3536 kg ha?1, of which 388, 352 and 460 kg ha?1 was white clover, from treatments A, B and C respectively. It is concluded that an autumn defoliation may affect the overwintering of white clover negatively, but that the effect on the grass may be even more detrimental.  相似文献   

19.
20.
Field and pot studies were conducted to evaluate the effects of seven rice establishment techniques {puddling transplanting (PT), no tillage transplanting (NTT), puddling drum wet seeding (PDWS), no tillage drum wet seeding (NTDWS), conventional tillage dry drilling (CTDD), furrow irrigated raised beds system dry drilling (FIRBSDD), and no-tillage dry-drilling (NTDD)} and water submergence stress on weeds and rice yield. The highest yield and least weed abundance were in the PT treatment. The direct seeded rice (DSR), both dry and wet exhibited severe weed infestation, and compared to transplanting showed reduced yield both in the presence and absence of weeds. The yield losses due to weeds in the DSR treatments ranged from 91.4 to 99.0%, compared to 16.0 and 42.0% in the transplanting treatments (PT and NTT). Weeds, including Cyperus rotundus L., Dactyloctenium aegyptium (L.) Willd., Digera arvensis Forsk., Phyllanthus niruri L., and Trianthema portulacastrum L. which were found in the un-puddled DSR treatments were absent in the puddled plots, particularly the PT treatments. In pot studies, continuous water-submergence (2.5 cm) for 20 days reduced the emergence of C. rotundus, D. aegyptium, T. portulacastrum, and Echinochloa crus-galli (L.) Beauv. by 99.4, 100, 100, and 24.4%, respectively, compared to alternate wetting–drying. In farmer's field studies, when compared to the PT treatments, the DSR treatments exhibited lower yields (15.8%) with coarse varieties (HKR-47 & IR-64), but fine cultivars (Sharbati & PB-1) exhibited similar yields under both systems. In view of the shortage of labour for manual transplanting, there is a need to develop suitable cultivars for aerobic system conditions (unpuddled DSR and NT machine-transplanting).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号