首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of partial cutting on species composition, new and residual-tree cohorts, tree size distribution, and tree growth was evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago, when 16–96% of the former stand basal area was removed.Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effects on tree species composition. The establishment of new-tree cohorts was positively related to the proportion of basal-area cut. The current stand basal area, tree species composition, and stand growth were significantly related to trees left after harvest (p<0.001). Trees that were 20–80 cm dbh at the time of cutting had the greatest tree-diameter and basal-area growth and contributed the most to stand growth. Diameter growth of Sitka spruce and western hemlock was similar, and the proportion of stand basal-area growth between species was consistent for different cutting intensities.Concerns about changing tree species composition, lack of spruce regeneration, and greatly reduced stand growth and vigor with partial cuts were largely unsubstantiated. Silvicultural systems based on partial cutting can provide rapidly growing trees for timber production while maintaining complex stand structures with mixtures of spruce and hemlock trees similar to old-growth stands.  相似文献   

2.
We compared hydraulic architecture, photosynthesis and growth in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a shade-intolerant species, and western hemlock (Tsuga heterophylla (Raf.) Sarg.), a shade-tolerant species, to study the temporal pattern of release from suppressive shade. In particular, we sought to determine whether hydraulic architecture or photosynthetic capacity is most important in constraining release. The study was conducted at two sites with mixed stands of 10- to 20-year-old Douglas-fir and western hemlock. At one site, the stand had been thinned allowing release of the understory trees, whereas at the other site, the stand remained unthinned. Douglas-fir had lower height growth (from 1998-2003) and lower relative height growth (height growth from 1998 to 2003/height in 1998) than western hemlock. However, relative height growth of released versus suppressed trees was higher in Douglas-fir (130%) than in western hemlock (65%), indicating that, although absolute height growth was less, Douglas-fir did release from suppression. Release seemed to be constrained initially by a limited photosynthetic capacity in both species. Five years after release, Douglas-fir trees had 14 times the leaf area and 1.5 times the leaf nitrogen concentration (N (area)) of suppressed trees. Needles of released western hemlock trees had about twice the maximum assimilation rate (A (max)) at ambient [CO(2)] as needles of suppressed trees and exhibited no photoinhibition at the highest irradiances. After release, trees increased in leaf area, leaf N concentration and overall photosynthetic capacity. Subsequently, hydraulic architecture appeared to constrain release in Douglas-fir and, to a lesser extent, in western hemlock. Released trees had significantly less negative foliar delta(13)C values than suppressed trees and showed a positive relationship between leaf area:sapwood area ratio (A (L)/A (S)) and delta(13)C, suggesting that trees with more leaf area for a given sapwood area experienced a stomatal limitation on carbon gain. Nonetheless, these changes had no significant effects on leaf specific conductivities of suppressed versus released trees of either species, but leaf specific root conductance was significantly lower in released Douglas-fir.  相似文献   

3.
The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from −2.6 to 2.4 m2/ha; differences in the number of trees/ha ≥50 cm dbh ranged from −8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate regeneration of shade-tolerant trees and underestimate total tree density (i.e., higher rates of tree mortality). However, comparisons with the chronosequences of forest inventory data indicated that the simulated data are within the range of variability observed in the Coast Range. Further exploration and improvement of ZELIG is warranted in three key areas: (1) modeling rapid rates of conifer tree growth without the need for a diameter-growth multiplier; (2) understanding and remedying rates of tree mortality that were higher than those observed in the independent data; and (3) improving the tree regeneration module to account for competition with understory vegetation.  相似文献   

4.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

5.
In 1989, the first recorded outbreak of hemlock looper (Lambdina fiscellaria fiscellaria (Guen.)) occurred in New Brunswick, Canada. Data were collected from ten plots established in an area infested from 1992–1994, to assess impacts of hemlock looper. Ocular and branch sample assessments of current defoliation and ocular assessments of total defoliation (all age classes of foliage) were conducted for balsam fir (Abies balsamea [L.] Mill.), white spruce (Picea glauca [Moench] Voss), and black spruce (Picea mariana (Mill.) B.S.P.). Stand response was assessed and related to cumulative defoliation. Ocular assessments were found to accurately estimate defoliation, which was significantly related to tree mortality. Ninety-two percent of balsam fir trees that had cumulative defoliation >90% died. Mortality of balsam fir was significantly (p < 0.05) related to tree size, in both lightly and severely defoliated plots; trees with DBH <11 cm sustained 22–48% higher mortality than larger trees. Mortality of balsam fir, in terms of both percent stems/ha and m3/ha merchantable volume, increased exponentially in relation to three estimates of cumulative (summed) plot mean defoliation. The strongest relationships (r2 = 0.75–0.79) were between mortality and the ocular defoliation assessment for 1990–1993 foliage. Tree mortality caused by the looper outbreak ranged from 4–14% stems/ha in lightly defoliated and from 32–100% in severely defoliated plots; merchantable volume killed was 3–14 m3/ha and 51–119 m3/ha, respectively. Relationships between mortality and defoliation were similar when defoliation was assessed for 1987–1993 and 1990–1993 foliage age classes.  相似文献   

6.
In forest ecosystems, the level of biodiversity is strongly linked to dead wood and tree microhabitats. To evaluate the influence of current forest management on the availability of dead wood and on the abundance and distribution of microhabitats, we studied the volume and diversity of dead wood objects and the distribution and frequency of cavities, dendrothelms, cracks, bark losses and sporophores of saproxylic fungi in montane beech-fir stands. We compared stands unmanaged for 50 or 100 years with continuously managed stands. A total of 1,204 live trees and 460 dead wood objects were observed. Total dead wood volume, snag volume and microhabitat diversity were lower in the managed stands, but the total number of microhabitats per ha was not significantly different between managed and unmanaged stands. Cavities were always the most frequent microhabitat and cracks the least frequent. Dendrothelm and bark loss were favored by management. Beech (Fagus sylvatica) carried many more microhabitats than silver fir (Abies alba), especially cavities, dendrothelms and bark losses. Fir very scarcely formed dendrothelms. Secondary tree species played an important role by providing cracks and bark losses. The proportion of microhabitat-bearing trees increased dramatically above circumference thresholds of 225 cm for beech and 215 cm for fir. Firs with a circumference of less than 135 cm did not carry microhabitats. In order to conserve microhabitat-providing trees and to increase the volume of dead wood in managed stands, we recommend conserving trees that finish their natural cycle over 10–20% of the surface area.  相似文献   

7.
We evaluated effects of belowground competition on morphology of naturally established coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) saplings in 60- to 80-year-old thinned Douglas-fir stands in southwestern Washington. We separately quantified belowground competition from overstory and understory sources using trenching and understory removal. In this light-limited environment of 26 ± 16% (std. dev.) full sunlight, 2-year exclusion of tree root competition by trenching increased sapling stem biomass by 18%, total aboveground biomass by 21%, number of interwhorl buds by 68%, total foliar biomass by 33%, and foliar biomass on branch components over 4 years old by 143%. Belowground competition did not influence shoot:root ratio or foliar efficiency (i.e., stem growth per unit foliage biomass). Sapling needle size, specific leaf area, and internodal distance also were not affected by belowground competition; these variables were apparently a function of the low-light environment. The principal source of belowground competition was roots of overstory trees; effects of belowground competition from understory vegetation were minor. Thus, under a partial overstory, morphology of Douglas-fir regeneration was influenced by both belowground and aboveground competition from overstory trees. In this environment, understory vegetation control would not likely influence belowground competition to an extent that would affect sapling morphology.  相似文献   

8.
Root pathogens are one of the principle factors affecting forest productivity in many forests, but few estimates of impact are available. Non-lethal root infections associated with Armillaria root disease were studied to determine their effect on stem volume yield in seven planted Douglas-fir stands and a naturally regenerated stand in British Columbia's southern interior. Trees were removed from the soil and the infection date of a random selection of trees was determined. The volume reduction attributable to disease was determined as a comparison of diseased to disease-free trees over time since infection. Volume reductions per tree ranged from 0 to 30 dm3 (0-27%) depending on the tree age and disease duration. Yield reduction reached 27 m3/ha, averaging 15 m3/ha for the three oldest planted sites by age 30 (7-15%), but was lower at the naturally regenerated site. Yield reduction at the site level correlated best with the number of diseased trees and an unknown site factor. Sites with slow juvenile growth had the least yield reduction owing to their lower incidence of disease over time. Yield was less affected by the proportion of diseased primary roots per tree than by the cumulative time since infection. A few of the diseased trees maintained growth rate after infection similar to disease-free trees; interestingly, these trees were smaller than average to begin with. Overall, trees suffer accumulating growth reduction without recovery. Root diseases prevent full expression of site potential even without mortality. Minimizing disease impact in respect to other forest management goals is also discussed.  相似文献   

9.
Interior Douglas-fir trees in plantations were assessed for size differences related to the level of diseased neighbours infected with Armillaria ostoyae. The four Douglas-fir stands studied ranged from 25- to 34-year-old, and represented the oldest accessible planted stands in the Interior Cedar Hemlock (ICH) ecosystem in British Columbia. Twenty-three to 25, 10-m radius plots were established in each stand. The spatial coordinates, total height, and diameter at breast height of all live and dead trees in the plots were recorded. Subject trees whose competitors were contained in the 10-m radius plots were also identified. Trees were pulled out of the soil using a mechanical excavator and the root systems were surveyed for evidence of infection by A. ostoyae. Stem disks were taken from each tree at 1.3 m above the ground for a determination of basal area. Increasing proportion of diseased trees in the plots resulted in less total plot basal area, but did not affect the mean basal area or height. Individual subject tree basal area was negatively related to the level of disease in surrounding competitors, opposite to expectations; however, diseased subject trees had reduced height and basal area compared to disease-free subject trees. Increasing competition reduced both the height and basal area of the trees, while regular distribution of all trees increased both total and mean plot basal area but not height. Disease incidence at the plot level and in individual subject trees was mainly affected by the neighbourhood conditions in which it grew, and was also related to disease intensity in the tree root systems. Although disease may alter resource partitioning among trees, the utilization of these resources is mostly limited by the increasing disease incidence as the stands age, the higher probability of larger trees being diseased with time, the occurrence of dead trees in clumps, and the high probability that dead trees will eventually infect live neighbours. The widespread belowground incidence of A. ostoyae in the ICH, its rapid colonization of stumps, and its wide host range can reduce site potential in managed stands.  相似文献   

10.
The objective of this study was to determine the relationship, or lack thereof, between growth and diversity of tree species and size in conifer stands of western North America. Growth was measured by net basal area growth and its components: survivor growth, recruitment, and mortality. The analysis used inventory data from permanent plots in the Douglas-fir/western hemlock forest type in Oregon and Washington, and in the mixed-conifer forest type in California. The methods consisted of generalized least square regression with spatial autocorrelation, controlling for the effect of other stand characteristics. Other things being equal, in the two forest types under study there was a strong positive relationship between net basal area growth and tree-species diversity. This effect was associated with higher recruitment in stands of higher tree-species diversity. Neither mortality nor growth of survivors was related to tree-species diversity. The relationship between growth and tree-size diversity was less clear. For Douglas-fir/western hemlock, net basal area growth was negatively correlated with tree-size diversity, essentially because recruitment was lower on plots of high tree-size diversity. For mixed conifers, net basal area growth tended also to be lower in plots of high tree-size diversity, but this was mostly because mortality was higher in plots of higher tree-size diversity.  相似文献   

11.
We investigated how partial overstory retention, understory vegetationmanagement, and protective Vexar® tubing affected the frequency andseverityof biotic injuries in a two-storied stand underplanted with western redcedar(Thuja plicata Donn ex D. Don), Douglas-fir(Pseudotsuga menziesii (Mirb.) Franco, grand fir(Abies grandis (Dougl.) Lindl), and western hemlock(Tsuga heterophylla (Raf.) Sarg.). The most prevalentsource of damage was browsing by black-tailed deer (Odocoileushemionis columbiana); deer browsed over 74% of Douglas-fir and over36% of western redcedar seedlings one or more times over the four years of thisstudy. Neither the spatial pattern of thinning (even or uneven) nor the densityof residual overstory affected browsing frequency. Spraying subplots may haveslightly increased browsing frequency, but the resulting reduction of theadjacent understory vegetation increased the volume of all seedlings by 13%,whether or not they were browsed. Vexar® tubing did not substantiallyaffectseedling survival, browsing damage frequency, or fourth-year volume. Greaterlevels of overstory retention reduced frequency of second flushing. Chafing bydeer and girdling by rodents and other small mammals began once seedlingssurpassed 1 m in height. Essentially all grand fir seedlingsexhibited a foliar fungus infection.  相似文献   

12.
We compared the understory communities (herbs, shrubs, and tree seedlings and saplings) of old-growth and second-growth eastern hemlock forests (Tsuga canadensis) in western Massachusetts, USA. Second-growth hemlock forests originated following clear-cut logging in the late 1800s and were 108–136 years old at the time of sampling. Old-growth hemlock forests contained total ground cover of herbaceous and shrub species that was approximately 4 times greater than in second-growth forests (4.02 ± 0.41%/m2 versus 1.06 ± 0.47%/m2) and supported greater overall species richness and diversity. In addition, seedling and sapling densities were greater in old-growth stands compared to second-growth stands and the composition of these layers was positively correlated with overstory species composition (Mantel tests, r > 0.26, P < 0.05) highlighting the strong positive neighborhood effects in these systems. Ordination of study site understory species composition identified a strong gradient in community composition from second-growth to old-growth stands. Vector overlays of environmental and forest structural variables indicated that these gradients were related to differences in overstory tree density, nitrogen availability, and coarse woody debris characteristics among hemlock stands. These relationships suggest that differences in resource availability (e.g., light, moisture, and nutrients) and microhabitat heterogeneity between old-growth and second-growth stands were likely driving these compositional patterns. Interestingly, several common forest understory plants, including Aralia nudicaulis, Dryopteris intermedia, and Viburnum alnifolium, were significant indicator species for old-growth hemlock stands, highlighting the lasting legacy of past land use on the reestablishment and growth of these common species within second-growth areas. The return of old-growth understory conditions to these second-growth areas will largely be dependent on disturbance and self-thinning mediated changes in overstory structure, resource availability, and microhabitat heterogeneity.  相似文献   

13.
Coniferous stumps in 83 stands in coastal British Columbia were sampled 3-5 years after precommercial thinning. The percentage of stumps and surface area colonized by Heterobasidion annosum were determined for 25 stumps of each species in each 5-cm diameter class present in each stand. There were significant differences among species in the percentages of stumps and surface area colonized, with Douglas-fir (Pseudotsuga menziesii) having the lowest values, amabilis fir (Abies amabilis) and Sitka spruce (Picea sitchensis) the highest and western hemlock (Tsuga heterophylla) being intermediate. For stumps of each species 5–20 cm in diameter, both the percentage of stumps and surface area colonized increased with increasing diameter. In stumps that were grafted to an adjacent tree, there was decreased incidence of H. annosum for Douglas-fir and Sitka spruce and increased incidence for western hemlock and amabilis fir. There were trends in the percentage of stumps and area colonized for season of thinning and biogeoclimatic subzones with the values for most species decreasing as the amount of precipitation increased. Colonization of precommercial thinning stumps by H. annosum occurs throughout the coastal region of British Columbia, and this will increase the amount of inoculum and will likely increase the incidence of butt rot. The results of this study suggest that the increase in inoculum can be minimized by thinning before age 15, by cutting only trees less than 10 cm in diameter and by thinning during low risk seasons.  相似文献   

14.
Little information is available comparing historic and modern sand savannas, and how remnants respond to restored fire. We compared short- and long-term effects of restored fire on the Tefft Savanna, a 197 ha eastern sand savanna in northwest Indiana that had undergone three decades of fire protection. U.S. Public Land Survey data from Tefft in 1833 indicate black and white oak barrens, and pin oak savanna, with trees averaging 50 stems/ha and 4 m2/ha basal area. We used ordination and a digital elevation model to assess topographic distribution of tree species in 1986. In 1986, we also compared initial effects of high- and low-intensity dormant season fire on woody vegetation among nine blocks containing black oak, white oak, and pin oak stands. Twenty years later, we compared the same blocks, all of which had been burned three times per decade with low-intensity fires. In 1986, black oak, white oak and pin oak occurred across a gradient of decreasing elevation and slope. At that time, unburned black oak and white oak stands averaged >400 stems/ha and about 10 m2/ha basal area, and their smaller size classes contained non-oak woody vegetation that apparently had invaded with fire exclusion. After initial burns, black oak and white oak stands receiving high-intensity fire averaged <200 stems/ha and had significantly lower oak canopy cover and basal area than unburned stands. Stands receiving low-intensity fire had intermediate oak canopy cover, with basal area similar to unburned stands. Pin oak stands were more fire-resistant, apparently because spring flooding often reduced fire effects. Density, cover and basal area of non-oak tree species were much lower than oaks, and were not reduced by initial burning. Repeated low-intensity burning over 20 years tended to maintain structure caused by initial fires. However, it reduced lower size class stem densities, promoted post-fire sprouting into the shrub layer, and allowed oak basal area to increase in larger size classes. Time since fire regulated shrub layer structure on a 4-year cycle. Density and cover of trees and shrubs returned to pre-burn conditions by the second and fourth growing seasons after fire, respectively, with non-oak tree species exceeding pre-burn cover and density by the fourth season. These results suggest that high-intensity fire is more important than repeated low-intensity burning in structuring and restoring eastern sand savanna, and that non-oak tree species, once established, may be resistant to low-intensity fire.  相似文献   

15.
This study examined the impact of pre-commercial thinning (PCT) on tree growth, product recovery, stand value and financial return in jack pine stands in Northwestern Ontario. Ten sites composed of both control and PCT stands representing various stand densities (2000–6000 trees/ha) and stand ages (26–36 years old) were selected for this study. Three thousand and eighty-two trees were measured for DBH and total height, and were reconstructed in 3-D using a taper equation for jack pine. The reconstructed virtual trees were then “sawn” using the software package Optitek to obtain optimal lumber value recovery, which was then used to determine total product value per tree and financial return. The quadratic mean DBHs of trees from the PCT stands were significantly larger than those from the control stands for all 10 sites. Six of ten PCT stands had significantly taller trees than did the controls of the same sites. With increasing stand density, tree DBH decreased in the control stands while no consistent pattern could be recognized for the DBH of the PCT stands. The increment in average DBH due to PCT increased with increasing thinning intensity. PCT reduced total tree volume per hectare, benefited merchantable stem volume per hectare, and improved the total lumber volume and value recovery per hectare. On average, the PCT stands produced approximately $2760 and $1770/ha (or 19.6 and 16.1%) more product value per hectare for the dimension mill and stud mill, respectively. PCT also significantly reduced logging and lumber conversion costs. Higher total product values and lower total costs resulted in higher benefit/cost (B/C) ratios in the PCT stands than did in the control stands. The increased financial return due to PCT is associated with the magnitude of difference in quadratic mean DBH resulting from PCT. The B/C ratio difference between control and PCT stands increased with increasing thinning intensity. Overall, this study indicates that PCT appears to be an economically viable silvicultural investment for jack pine stands in Northwestern Ontario.  相似文献   

16.
The Douglas-fir region in northwestern North America is characterized by abundant moisture supply during winter, extended dry periods during the growing-season and significant differences in water availability. Many soils have low fertility and native tree species respond to nitrogen fertilization, especially Pseudotsuga menziesii (Mirb.) Franco (coast Douglas fir). Although irrigation of commercial forests in this region is currently impractical, questions arising about the relative importance of water and nutrients were examined using long-term growth data from three studies.

At Pack Forest, fertilization within irrigation doubled growth rates, and no positie growth responses were measured from irrigation. Short-term (5 years) irrigation with sewage effluent containing many nutrients resulted in a six-fold increase in biomass production for poplar and three-fold for Douglas fir as compared to irrigation with equal volumes of river water.

Volume growth in 12- to 65-year-old stands in southwestern Oregon was increased by fertilization at about 70% of the location; annual gain averaged 2.73 m3 ha−1 for 5–12 years. Response was not related to annual precipitation, which ranhed from 81 to 279 cm, nor other moisture-related variables. Absolute and relative volume response showed highest correlation with soil carbon: nitrogen ratio.

Compared with nutrition, moisture does not seem to be a major limiting factor for growth in the Douglas-fir region of the Pacific northwest.  相似文献   


17.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

18.
Pure stands of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and mixed stands of Douglas-fir and naturally established red alder (Alnus rubra Bong.) were examined on two different sites for soil properties, tree growth and nutrition, and aboveground ecosystem biomass and net primary production. One site (Mt. Benson, Nanaimo, B.C.) was nitrogen (N)-deficient and had a low site index (expected Douglas-fir height of 24 m at 50 years). The other site (Skykomish, western Washington) was N-rich and had a site index of 45 m at 50 years. Soil N accretion on the red alder units was estimated at 65 (Mt. Benson) and 42 (Skykomish) kg ha?1 year?1 for 23 years to a soil depth of 50 cm. At the current stage of plantation development, presence of red alder at the infertile Mt. Benson site increased average Douglas-fir diameter but did not affect its basal area and basal area growth rate; including alder stem biomass increased total stand basal area and basal area growth 2.5 fold. Presence of red alder at the fertile Skykomish site decreased average diameter, basal area, and basal area growth of Douglas-fir; including alder biomass left total stand basal area and basal area growth unchanged. Douglas-fir foliar N concentrations on Mt. Benson increased from 0.93 without alder to 1.41% on the red alder unit but were 1.55% for both units at Skykomish. Although alder did not affect Douglas-fir aboveground biomass and net primary production on Mt. Benson, total ecosystem biomass doubled and production tripled when alder biomass was included. Conversely, at Skykomish, Douglas-fir biomass and production decreased, and total ecosystem values were essentially unchanged. Mixing red alder and Douglas-fir seems to have great potential for increasing Douglas-fir growth and ecosystem production on infertile, N-deficient sites but probably has limited value on fertile, N-rich sites.  相似文献   

19.
In the 1970s, public opposition to clearcut harvesting in hardwood forests of the eastern United States led forest managers and scientists to consider alternative practices that retain a low-density overstory forest cover. From 1979 to 1984, a form of clearcut-with-reserves harvesting was applied in 80-year-old Appalachian mixed-hardwoods to create four experimental stands with two-aged structures. The residual stand basal area averaged 5.3 m2/ha, comprising an average of 36 reserve trees/ha. The reserve trees were evenly distributed throughout the stand, initially with considerable space between their crowns, thus providing the sunlight and seedbed conditions needed to recruit desirable shade-intolerant reproduction after harvest. This study examined the response of the 100-year-old reserve trees and the development of the 20-year-old natural reproduction located in their immediate vicinity.Diameter at breast height (Dbh), height, and relative position were recorded for all reproduction ≥2.5 cm within transects adjacent to northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) reserve trees. Each transect was divided into five zones, which represented positions relative to the reserve tree crown edge, and basal area was computed for each of three shade tolerance classes within each zone. A repeated measures ANOVA was used to compare basal area of reproduction by tolerance classes and zone. In general, basal area of reproduction, particularly that of shade-intolerant species, increased with distance from the reserve tree. Regression analyses also indicated that dbh and height of reproduction was positively related to distance from the reserve trees. Although height growth of reserve trees was similar for both species, northern red oak exhibited significantly greater dbh and crown radial growth than yellow-poplar.The results indicated that reserve trees influence the growth rate and species composition of reproduction in their immediate vicinity. Basal area of reproduction increased from 10.1 to 17.7 m2/ha with increasing distance from the reserve trees. Basal area of intolerant species more than doubled along the same gradient. Basal area of reproduction in the two-age stands was 30–40% less than that observed in even-aged stands on similar growing sites, but the reduction was offset by growth of the reserve trees. The surface area covered by the reserve tree crowns increased approximately 88% for northern red oak and 44% for yellow-poplar. Since the sphere of influence of reserve trees increases over time, forest managers must consider their long-term impact on reproduction when prescribing clearcut-with-reserves harvests and other practices that involve retaining trees for many years.  相似文献   

20.
This study evaluated the impacts of partial cutting on stand characteristics, product recovery, and financial return in mature black spruce-balsam fir stands in Quebec. Four harvesting strategies (clearcut with advance growth protection, irregular shelterwood cutting leaving small merchantable stems, and two patterns of selection cutting) were each applied four times in 20 ha harvest blocks representing irregular black spruce-balsam fir stands. Before the four harvesting strategies were applied, there were no significant differences in stand characteristics (i.e., quadratic mean DBH, basal area, and merchantable stem volume) or expected product recoveries (i.e., lumber volume and value, chip volume and value, and total product recovery) estimated using the Optitek sawing simulation package. There was no significant difference in stand characteristics or product recovery values of the harvested stems between the selection cutting approaches (p > 0.05). However, significant differences in stand characteristics and product recovery values of the harvested stems existed between these treatments and both of the two other treatments. After cutting, the two selection cutting treatments had the lowest impacts on stand characteristics, as compared to the two other treatments. The selection cutting approach which used temporary skidding trails and where cutting was initially concentrated over half of the stand resulted in the highest benefit/cost ratio, relatively high net income and high total product value of residual trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号