首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forest growth/hydrology model FORGRO–SWIF, consisting of a forest growth and a soil water model, was applied to quantify the inter-annual variability of the carbon and water budgets of a Douglas-fir forest (Pseudotsuga menziessii (Mirb.) Franco) in The Netherlands. With these budgets, the water use efficiency, the amount of water needed to fix a certain amount of carbon, and its variability was estimated. After testing the model performance in simulating daily carbon and transpiration fluxes, and soil water contents of this forest ecosystem, the model was applied to a 10-year period of meteorological data. Two forest parameterisations were used: the non-thinned situation of 1995, and the thinned situation in 1996. Relations between forest water use and forest growth were quantified with the model. The model performed satisfactory, an R2 value for daily carbon fluxes of 0.58 and for daily transpiration fluxes 0.81. The forest showed to be a clear carbon sink, in the climax situation between 1000 and 1210 g C m−2 per year. In the thinned situation the carbon uptake was more than halved to values between 430 and 620 g C m−2 per year. The calculated yearly WUE’s for the forest were between 2.5 and 4.3 g C m−2 mm−1 and for the total ecosystem between 1.1 and 2.0 g C m−2 mm−1. The thinned forest had clearly lower WUE’s than the non-thinned forest. The importance of including interception evaporation as forest water use is discussed, and the results showed the importance of integration of forest growth and forest water use for calculating yearly carbon and water budgets.  相似文献   

2.
We estimated gross photosynthetic production (GPP) of the forest floor vegetation in a 40-year-old Scots pine stand in southern Finland with three different methods: measurements of CO2 exchange of single leaves of field and ground layer species, measurement campaigns of forest floor net CO2 efflux at different irradiances with a manually operated soil chamber, and continuous measurements of forest floor net CO2 efflux with an automatic transparent chamber system. We upscaled the measured light response curves from the manual soil chambers using the biomass distribution of the forest floor species, a modelled seasonal pattern of photosynthetic capacity and a model of light extinction down the canopy. Leaf gas exchange measurements as well as measurements of net CO2 efflux with the manual chamber indicated saturation of photosynthesis at relatively low (50–400 μmol m−2 s−1) light levels. Leaf and patch level measurements gave similar rates of photosynthetic CO2 fixation per unit leaf biomass suggesting that reduction in photosynthetic production due to within-patch shading was small. Upscaling of photosynthetic production to the stand level and continuous measurements with the automatic soil chambers indicated that momentary photosynthetic production by the forest floor vegetation in the summer was typically about 2 μmol m−2 (ground) s−1. Cumulative upscaled GPP over the period of no snow (from 20 April to 20 November) in year 2003 was 131 g C m−2. Continuous measurements with the automatic soil chamber system were in line with the upscaling, the cumulative GPP being 83 g C m−2 and the seasonal pattern of photosynthetic rate similar to that of the upscaled photosynthesis.  相似文献   

3.
The loss of foliage through pruning of live branches may reduce tree growth or it may be compensated by photosynthetic up-regulation of the remaining crown. Here, the changes in light-saturated photosynthesis following pruning to remove 50% of green crown length were examined in 4-year-old Eucalyptus pilularis Sm. and Eucalyptus cloeziana F. Muell. trees. The objectives of the study were to: (1) compare leaf-level physiological (light-saturated photosynthesis (Amax), stomatal conductance (g), transpiration (T), dark respiration (Rd), quantum yield (Φ), light compensation point (Γ), water-use efficiency (WUE), nitrogen-use efficiency (NUE)) traits in species with contrasting crown dynamics and structure, (2) examine the effect of crown position on these traits, and (3) examine the effect of pruning on Amax, g, T, WUE, NUE, leaf N and P concentrations and specific leaf area (SLA). Prior to pruning there were no differences in Rd, Γ and Φ between E. pilularis and E. cloeziana but differences in Amax, T, g, leaf N, leaf P, WUE, NUE and SLA. Whereas the rate of physiological processes (Amax, T, and g) and leaf N and P concentrations increased with crown height, Rd, Γ, Φ and SLA declined along this vertical gradient, except in the upper crown of E. cloeziana where Amax, T and g were not different to the lower crown. No up-regulation of photosynthesis or changes in leaf physiology occurred between 6 and 13 months after pruning in either species. The results provide an important basis for modelling pruning effects in process-based tree growth models.  相似文献   

4.
Growth and physiological responses of Pinus pinaster Ait. to water and nutrient availability were compared in four open pollinated families of Arenas de San Pedro provenance (Central Iberian Peninsula), looking for more useful parameters and growing conditions to be included in early selection programmes of forest trees. Young seedlings were grown in a greenhouse, subjected to high and low water and nutrient regimes, during 14 weeks. Interfamily differences were significant with regard to growth, nutrient content and water-use efficiency (WUE): differences in growth were higher under more favourable growing conditions; gas exchange differences were higher in the short term (9 weeks), indicating a faster reaction to water stress of the better adapted families to these conditions; the highest growth rates were found in the families with the largest plasticity, highest WUE and highest nutrient content. Water regime and nutrients had significant effects on growth, δ13C, gas exchange and water relation parameters. For these parameters the ranking of the families was kept regardless the water × nutrient supply combination and there was not a significant family × treatment interaction. In the long term (14 weeks) higher water supply and nutrient content significantly increased instantaneous WUE. The positive relationships between growth, intrinsic WUE (A/g wv) and δ13C demonstrate that it should be possible to use physiological parameters (e.g. g wv, δ13C) as a surrogate for the efficiency in the use of water, at least if short periods of water stress (up to 2 months long) were frequent, as it occurs in the Mediterranean basin. There was also some indication that the decrease in nitrogen or potassium supply led to increasing stomatal conductance and hence lower WUE.  相似文献   

5.
We simulated loblolly pine (Pinus taeda L.) net canopy assimilation, using BIOMASS version 13.0, for the southeastern United States (1° latitude by 1° longitude grid cells) using a 44-year historical climate record, estimates of available water-holding capacity from a natural resource conservation soils database, and two contrasting leaf area indices (LAI) (low; peak LAI of 1.5 m2 m−2 projected, and high; 3.5 m2 m−2). Median (50th percentile) available water-holding capacity varied from 100 to 250 mm across the forest type for a normalized 1.25 m soil profile. Climate also varied considerably (growing season precipitation ranged from 200 to 1600 mm while mean growing season temperature ranged from 13° to 26°C). Net canopy assimilation ranged from 9.3 to 19.2 Mg C ha−1 a−1 for high LAI and the 95th percentile of available water-holding capacity simulations.We examined the influence of soil available water-holding capacity, and annual variation in temperature and precipitation, on net canopy assimilation for three cells of similar latitude. An asymptotic, hyperbolic relationship was found between the 44-year average net canopy assimilation and soil available water-holding capacity. Shallow soils had, naturally, low water-holding capacity (<100 mm) and, subsequently, low productivity. However, median available water-holding capacity (125–150 mm) was sufficient to maintain near maximum production potential in these cells.Simulations were also conduced to examine the direct affects of soil available water on photosynthesis (PN) and stomatal conductance (gS) on net canopy assimilation. In the absence of water limitations on PN and gS, net canopy assimilation increased by only 10% or less over most of the loblolly pine region (when compared to simulations for median available water-holding capacity with water influences in place). However, the production differences between high and low LAI, at the median soil available water-holding capacity, ranged from 30% to 60% across the loblolly pine range. Vapor pressure deficit was found to dramatically reduce productivity for stands of similar LAI, incident radiation, rainfall, and available water-holding capacity. Thus, these simulations suggest that, regionally, loblolly pine productivity may be more limited by low LAI than by soil available water-holding capacity (for soils of median available water-holding capacity or greater). In addition, high atmospheric forcing for water vapor will reduce net assimilation for regions of otherwise favorable available water and LAI.  相似文献   

6.
Studies on basic density of woody species in Amazonian savannas are needed to convert data on woody volume to biomass. These ecosystems, which have large carbon stocks, emit greenhouse gases annually due to frequent burnings. Basic density (g cm−3: oven-dry weight/wet volume), measured from complete sample disks (bark, sapwood and heartwood), was calculated for the most abundant woody species in three types of open savannas (Sg: grassy-woody savanna; Sp: savanna parkland; Tp: steppe-like parkland) in Roraima, a state in the northern part of Brazil’s Amazon region. The species selected represent 90–95% of the woody biomass estimated in these ecosystem types. Seven additional species were lumped in an “others” group. In total, we sampled 107 trees: 40 in Sg, 37 in Sp and 30 in Tp. Bowdichia virgilioides (0.516 ± 0.021 (S.E.) g cm−3) was the species with the highest basic density, followed by the “others” group (0.485 ± 0.057 g cm−3), Curatella americana (0.413 ± 0.028 g cm−3), Byrsonima crassifolia + B. coccolobifolia (0.394 ± 0.019 g cm−3), Himatanthus articulatus (0.375 ± 0.020 g cm−3) and B. verbascifolia (0.332 ± 0.020 g cm−3). Basic density of the species with the greatest woody biomass in Roraima’s open savannas (C. americana and B. crassifolia + B. coccolobifolia) did not differ significantly at the 5% level (ANOVA) among the three ecosystem types studied. Wood basic density in these savannas (weighted mean = 0.404 ± 0.025 g cm−3) is lower than that in Amazonian forests (weighted mean = 0.680 g cm−3). These results reduce uncertainty in calculations of carbon stocks and of greenhouse gas emissions from clearing and burning tropical savanna.  相似文献   

7.
Two new trisaccharide intermediates of phenylethanoid glycosides, peiioside A1/A2 (1a/1b) and peiioside B (2), were isolated from the n-BuOH fraction of MeOH extract of the stems of Callicarpa peii H.T. Chang, together with five biogenetic relevant known compounds 37. The structures of compounds 1 and 2 were elucidated by extensive spectroscopic methods (especially 2D-NMR techniques) and acid-catalyzed hydrolysis as O-α-l-rhamnopyranosyl-(1″  3′)-O-[β-d-apiofuranosyl-(1‴  6′)] -4′-O-[(E)-caffeoyl]-d-glucopyranoside] (1a/1b), 3,4-dihydroxy-β-phenylethoxy-O-[β-d-apiofuranosyl-(1‴  6′)-α-l-rhamnopyranosyl-(1″  3′)-O-β-d-glucopyranoside] (2), respectively. On the basis of the isolated compounds, a presumable biogenetic pathway of the biologically interesting phenylethanoid glycosides about forsythoside B (3) and acteoside (4) isolated from this species was proposed. Isolation of five related intermediates (12, 57) provided further support for the biogenetic path. This is the first report about phytochemical research on C. peii and the biogenetic hypothesis of forsythoside B and acteoside.  相似文献   

8.
The objective of the present study was to investigate arbuscular mycorrhizal status of five species of rhododendrons distributed in Kumaun region of the Indian Central Himalaya. Root and rhizosphere soil samples of all the five species of rhododendrons, namely, Rhododendron anthopogon, R. arboreum, R. campanulatum, R. barbatum and R. lepidotum were collected from temperate, sub-alpine to alpine location in altitudinal range from 1500 to 4500 m amsl. The arbuscular mycorrhizal colonization in root samples ranged from 28 to 42%; and maximum and minimum colonization was observed in R. arboreum and R. lepidotum, respectively. The highest number of intraradical vesicles (12.5 ± 2.8 cm−1 root segment) was recorded in R. arboreum and the lowest (7.0 ± 1.7 cm−1 root segment) in R. barbatum; vesicles were not observed in R. lepidotum. Spores were extracted from the rhizosphere soil by wet sieving to perform microscopic identification of the species. The maximum and minimum populations of spores were detected in the rhizosphere soil samples of R. anthopogon (52.0 ± 1.5 spores 25 g−1 soil) and R. lepidotum (32.0 ± 2.5 spore 25 g−1 soil), respectively. Spore populations were found to belong to five genera—Acaulospora, Glomus, Gigaspora, Sclerocystis and Scutellispora; genus Glomus was found to be dominant in the rhizosphere soil samples of all the rhododendron species. The most frequent and abundant species was G. fasciculatum, however, this species was not isolated from the rhizosphere soil of R. barbatum. Finger millet (Eleucine coracana) was used to cultivate the trap culture of arbuscular mycorrhizal fungi to confirm the species identity. Spores of Glomus pustulatum, not detected in the rhizosphere soil, were recovered from the trap culture. Contrary to this, genus Gigaspora, which was present in the rhizosphere soil, did not sporulate in the trap culture. Shannon and Wiener index of diversity and Simpson's index of dominance indicated that the species richness, dominance and diversity of arbuscular mycorrhizal fungi decrease with increasing altitude. In two species of rhododendrons, namely R. campanulatum and R. anthopogon, dark septate mycelium was also observed.  相似文献   

9.
Four new triterpenoids, sweriyunnangenin A (1), sweriyunnanosides A (2), B (3) and C (4), along with nineteen known compounds (523) were isolated from Swertia yunnanensis. Based on extensive spectroscopic analyses (1D- and 2D-NMR, HRESIMS, UV, IR, [α]D), the structures of sweriyunnangenin A (1), sweriyunnanosides A (2), B (3) and C (4) were elucidated as taraxer-14-ene-3α,6β-diol, oleanolic acid 28-O-β-d-glucopyranosyl-(1  2)-O-β-d-glucopyranoside, 2α,3β-di-hydroxyolean-12-en-28-oic acid 28-O-β-d-glucopyranosyl(1  6)-β-d-glucopyranosyl (1  6)-β-d-glucopyranosyl(1  2)-β-d-glucopyranoside and hederagenin 28-O-β-d-glucopyranosyl(1  6)-β-d-glucopyranosyl(1  6)-β-d-glucopyranosyl(1  2)-β-d-glucopyranoside, respectively. Twenty-two compounds were evaluated for their anti-HBV activities on the HepG 2.2.15 cell line in vitro, of which nine compounds showed potent anti-HBV activities. Compounds 1, 56, 1416 and 19 showed activities against the secretion of HBsAg (IC50 values from 0.10 to 1.76 mM) and HBeAg (IC50 values from 0.04 to 1.41 mM), and compounds 11 and 1316 exhibited significant inhibition on HBV DNA replication (IC50 values from 0.01 to 0.09 mM).  相似文献   

10.
Xanthium spinosum L. (Asteraceae) is a medicinal weed distributed worldwide. Many of its diverse ethnopharmacological uses – namely diarrhoea, inflammation, liver disorders, snake bite and fever – are linked – at least in part – to an uncontrolled release of arachidonic acid metabolites. The crude extract of X. spinosum roots from Jordanian origin dose-dependently inhibited the 5-LOX (IC50  10 μg/mL), COX-1(IC50  50 μg/mL), and 12-LOX (IC50  170 μg/mL) enzymatic pathways in intact pro-inflammatory cells. A direct activity at the level of PLA2 is not probable, but the extract induced the synthesis of the anti-inflammatory eicosanoid 15(S)-HETE, which may in turn inhibit this enzyme. 5-LOX bioguided fractionation of the crude extract led to the isolation of ziniolide, a known 12,8-guaianolide sesquiterpene lactone, from the hydro-alcoholic fraction of the n-hexane extract (IC50 = 69 μM). Both the plant extract and ziniolide are in vitro inhibitors of the phorbol-induced NFκB activation, a key regulator of the arachidonic pathway.  相似文献   

11.
Seasonal changes in carbon isotope discrimination (Δ) and gas exchange traits were assessed in four Populus×euramericana clones differing in growth potential. Measurements were made during the second year after establishment in the field under two watering regimes, which were defined by the time-span between flood irrigations, hence resulting in different dry-down cycles: high irrigation (conservative schedule currently applied in the Ebro Valley, Spain) and low irrigation (equivalent to about a one-fourth reduction in water inputs). Net CO2 assimilation rate (A), stomatal conductance (gs), intrinsic water-use efficiency (A/gs) and other related photosynthetic traits (leaf nitrogen concentration, leaf greenness and leaf mass per area) were measured prior to watering, and Δ was analysed in water-soluble leaf extracts (Δs) and bulk leaves (Δl). Stem growth was monitored over 3 years starting at the year of establishment (1998). Data were subjected to a repeated measures ANOVA over time for a randomised block split-plot design across watering regimes. Significant differences between watering regimes were detected using a long-term estimate of photosynthetic performance such as Δl, in agreement with changes in soil water status and evapotranspirative demand. However, the lack of significant genotype×watering regime interactions for gas exchange traits and Δs suggested that water shortage imposed by low irrigation was not sufficient to reveal physiological adaptations to drought. In this regard, the reduction in water inputs brought about by low irrigation did not reduce tree growth for any of the clones, suggesting that the current irrigation scheme employed in the region is superfluous to the water consumption needs of poplars. Genotypic variation was detected in gas exchange traits, Δs, Δl and stem growth under both watering treatments. Significant correlations with stem volume for Δs (r = −0.60, p<0.05) and A (r = + 0.61, p<0.05) suggested that growth was improved by higher water-use efficiency (the ratio of carbon fixed to water lost, as inferred by Δs) due to variation in A rather than in gs. This observation corroborated the expectation derived from current theories that a lower Δ is related to higher stem volume, as a result of changes in net CO2 assimilation rates.  相似文献   

12.
AimTotal flavones of Hippophae rhamnoides L. (TFH) have a clinical use in the treatment of cardiac disease. The pharmacological effects of TFH are attributed to its major flavonoid components, isorhamnetin, kaempferol, and quercetin. However, poor oral bioavailability of these flavonoids limits the clinical applications of TFH. This study explores phytic acid (IP6) enhancement of the oral absorption in rats of isorhamnetin, kaempferol, and quercetin in TFH.MethodsIn vitro Caco-2 cell experiments and in vivo pharmacokinetic studies were performed to investigate the effects of IP6. The aqueous solubility and lipophilicity of isorhamnetin, quercetin, and kaempferol were determined with and without IP6, and mucosal epithelial damage resulting from IP6 addition was evaluated by MTT assays and morphology observations.ResultsThe Papp of isorhamnetin, kaempferol, and quercetin was improved 2.03-, 1.69-, and 2.11-fold in the presence of 333 μg/mL of IP6, respectively. Water solubility was increased 22.75-, 15.15-, and 12.86-fold for isorhamnetin, kaempferol, and quercetin, respectively, in the presence of 20 mg/mL IP6. The lipophilicity of the three flavonoids was slightly decreased, but their hydrophilicity was increased after the addition of IP6 in the water phase as the logP values of isorhamnetin, kaempferol, and quercetin decreased from 2.38 ± 0.12 to 1.64 ± 0.02, from 2.57 ± 0.20 to 2.01 ± 0.04, and from 2.39 ± 0.12 to 1.15 ± 0.01, respectively. The absorption enhancement ratios were 3.21 for isorhamnetin, 2.98 for kaempferol, and 1.64 for quercetin with co-administration of IP6 (200 mg/kg) in rats. In addition, IP6 (200 mg/kg, oral) caused neither significant irritation to the rat intestines nor cytotoxicity (400 μg/mL) in Caco-2 cells.ConclusionsThe oral bioavailability of isorhamnetin, kaempferol, and quercetin in TFH was enhanced by the co-administration of IP6. The main mechanisms are related to their enhanced aqueous solubility and permeability in the presence of IP6. In summary, IP6 is a potential absorption enhancer for pharmaceutical formulations that is both effective and safe.  相似文献   

13.
Drought periods are becoming more extreme worldwide and the ability of plants to contribute towards atmospheric flux is being compromised. Properly functioning stomata provide an exit for water that has been absorbed by the roots, funneled into various cell parts, and eventually released into the atmosphere via transpiration. By observing the effects that weather conditions such as climate change may have on stomatal density, distribution, and functioning, it may be possible to elucidate a portion of the mechanisms trees use to survive longer periods of water stress. This study analyzed stomatal density (SD), stomatal conductance (gs ), CO2 assimilation (A), instantaneous water-use efficiency (WUEi ), and transpiration (E) rates in six native tree species in the Midwestern USA and showed that trees within the same ecotype followed similar trends, but that trees within the same family did not when exposed to identical greenhouse conditions. Naturally drought tolerant tree species demonstrated lower g s and higher WUEi , while intolerant species had higher SD. This study showed negative or no correlation between SD and g s , A, E, and WUEi and positive correlations between E and A and gs and E.  相似文献   

14.
The present study aimed at investigating the structural features and antioxidant activities of a polysaccharide fraction (DHP1A) obtained from Dendrobium huoshanense, a precious herb medicine in China. DHP1A mainly consisted of mannose (Man), glucose (Glc) and a trace of galactose (Gal), with a molecular weight of 6700 Da. Its backbone contained (1  4)-linked α-D-Glcp, (1  6)-linked α-D-Glcp and (1  4)-linked β-D-Manp, with a branch of terminal β-D-Galp. The in vitro antioxidant evaluation revealed that DHP1A had a remarkable inhibition effect on the FeCl2-induced lipid peroxidation. Furthermore, DHP1A pretreatment decreased the production of malondialdehyde (MDA), and restored the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the level of glutathione (GSH) in the livers of CCl4-treated mice. These results suggested that DHP1A was a potential antioxidant component in D. huoshanense.  相似文献   

15.
Three new polyacetylenes, 8-(Z)-decene-4, 6-diyne-1, 3, 10-triol (1), 1, 3S, 8S-trihydroxydec-9-en-4, 6-yne (2), 3S, 8S-dihydroxydec-9-en-4, 6-yne 1-O-β -D-glucopyranoside (3), and one new glucosyl caffeoate, 1-O-ethyl-6-O-caffeoyl-β -D-glucopyranose (4), together with 34 known compounds were isolated from Artemisia capillaris. The structures of the new compounds were determined by extensive spectroscopic analyses including 1D and 2D NMR, HRESIMS, [α]D and CD experiments. Among them, 19 compounds showed activity inhibiting HBsAg secretion; 20 compounds showed activity inhibiting HBeAg secretion; and 25 compounds possessed inhibitory activity against HBV DNA replication according to our anti-HBV assay on HepG 2.2.15 cell line in vitro. The most active compound 12 could inhibit not only the secretions of HBsAg and HBeAg, but also HBV DNA replication with IC50 values of 15.02 μM (SI = 111.3), 9.00 μM (SI = 185.9) and 12.01 μM (SI = 139.2).  相似文献   

16.
In this paper, barbigerone (1a) and its twenty-seven related structural analogues were synthesized via complementary synthetic routes and their anti-inflammatory effects on the expression of TNF-α in LPS-stimulated splenocytes were evaluated. Among these compounds, 1a, 1d, 1f and 1g were found to remarkably inhibit TNF-α production. Furthermore, 1g showed the most potent and dose-dependent manner inhibitory effect on TNF-α release, with better IC50 value (3.58 μM) than barbigerone (8.46 μM). Oral administration of 1g at 20 mg/kg/day for two weeks obviously demonstrated protective effect in adjuvant-induced arthritis models as evaluated by clinical score of paws, and histological examination of joint tissues from rats. Mechanism studies on mRNA and protein level suggested that 1g inhibited the TNF-α production via depressing TNF-α converting enzyme (TACE) mRNA expression. In conclusion, these data show 1g with potential therapeutic effects as an anti-inflammatory agent.  相似文献   

17.
Hispolon was the main antitumor active ingredient in Phellinus sensu lato species. In order to confirm the dual regulating estrogenic ingredient and obtain more effective natural estrogen replacement drugs, hispolon was separated from Phellinus lonicerinus (Bond.) Bond. et sing. Hispolon exhibited significant anti-proliferative effect against estrogen-sensitive ER (+) MCF-7 cells in the absence of estrogen, and exhibits antagonistic effects on 17β-estradiol (E2)-induced MCF-7 cell proliferation when E2 and the different concentrations of hispolon were treated simultaneously. Hispolon also inhibited the proliferation of estrogen-negative ER (−) MDA-MB-231 cells at the concentration of 5.00 × 10 5 M. The yeast two-hybrid experiments showed that hispolon had strong and non-selective effects on the estrogen receptor (ER) α and ERβ at a concentration of 1.00 × 10 6 M. The ERβ-binding ability of hispolon was larger than ERα in the concentration range of 1.00 × 10 9 M and 1.00 × 10 7 M. Hispolon could increase the body weight coefficient, serum E2 and progesterone contents in immature female mice at dose of 9.10 × 10 6 mol/kg, and increase coefficient of thymus and spleen in mice. The Gscores of hispolon-ERα and hispolon-ERβ docked complexes were − 7.93 kcal/mol and − 7.79 kcal/mol in docking simulations. Hispolon presented dual regulating estrogenic activities, which showed estrogenic agonist activity at low concentration or lack of endogenous estrogen, and the estrogenic antagonistic effect was stimulated at high concentrations or too much endogenous estrogen. Hispolon could be used for treating the estrogen deficiency-related disease with the benefit of non-toxic to normal cells, good antitumor effects and estrogenic activity.  相似文献   

18.
To determine annual litter production of regenerating forest areas in the Tigray highlands of northern Ethiopia monthly litter production was monitored over a two-year period in areas with varying degree of vegetation cover restoration. Total annual litter production varied from 30 to 425 g m−2 and increased significantly where areas were closed for a longer time. Litter production was depending on vegetation cover through an exponential relation and was influenced also by soil fertility. Leaf litter typically constituted between 70 and 85% of total litter production, while contributions of woody and reproductive litter varied according to species composition. Strong seasonality in litterfall was explained by pronounced seasonal variation in rainfall. Standing crop of litter built up once an area was closed for grazing, increasing from around 20 g m−2 in degraded grazing lands to nearly 600 g m−2 in an old exclosure. Litter accumulation was mainly determined by litter input, but was also influenced by litter quality, species composition and microclimate development in the restoring forest areas. A detailed study of nine dominant shrub and tree species revealed three distinct litter production patterns, corresponding to drought-deciduous species, evergreen species and (semi-)evergreen Acacia species respectively.  相似文献   

19.
Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil–water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin–phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil–water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin.  相似文献   

20.
Two new flavanones with a C15 isoprenoid group, japonicasins A and B (1 and 2), were isolated from the leaves of Sophora japonica. This is the first report on the presence of the (2E,7E)-6-isopropyl-3,9-dimethyldeca-2,7,9-trien-1-yl group (C15 isoprenoid group) in isoprenylated flavonoids. Their structures were determined by spectroscopic methods, including UV, IR, 1D and 2D NMR, HRESIMS, and CD experiments. In addition, the antioxidant activities of compounds 1 and 2 were determined through DPPH radical scavenging assays. They exhibited potential antioxidant activities, with IC50 values of 35.1 ± 0.8 μM and 88.7 ± 1.1 μM for compounds 1 and 2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号