首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
OBJECTIVE: To determine whether expression of feline coronavirus (FCoV) 7b protein, as indicated by the presence of specific serum antibodies, consistently correlated with occurrence of feline infectious peritonitis (FIP) in cats. SAMPLE POPULATION: 95 serum samples submitted for various diagnostic assays and 20 samples from specific-pathogen-free cats tested as negative control samples. PROCEDURES: The 7b gene from a virulent strain of FCoV was cloned into a protein expression vector. The resultant recombinant protein was produced and used in antibody detection assays via western blot analysis of serum samples. Results were compared with those of an immunofluorescence assay (IFA) for FCoV-specific antibody and correlated with health status. RESULTS: Healthy IFA-seronegative cats were seronegative for antibodies against the 7b protein. Some healthy cats with detectable FCoV-specific antibodies as determined via IFA were seronegative for antibodies against the 7b protein. Serum from cats with FIP had antibodies against the 7b protein, including cats with negative results via conventional IFA. However, some healthy cats, as well as cats with conditions other than FIP that were seropositive to FCoV via IFA, were also seropositive for the 7b protein. CONCLUSIONS AND CLINICAL RELEVANCE: Expression of the 7b protein, as indicated by detection of antibodies against the protein, was found in most FCoV-infected cats. Seropositivity for this protein was not specific for the FCoV virulent biotype or a diagnosis of FIP.  相似文献   

4.
A closed household of 26 cats in which feline coronavirus (FCoV), feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) were endemic was observed for 10 years. Each cat was seropositive for FCoV on at least one occasion and the infection was maintained by reinfection. After 10 years, three of six surviving cats were still seropositive. Only one cat, which was also infected with FIV, developed feline infectious peritonitis (FIP). Rising anti-FCoV antibody titres did not indicate that the cat would develop FIP. The FeLV infection was self-limiting because all seven of the initially viraemic cats died within five years and the remainder were immune. However, FeLV had the greatest impact on mortality. Nine cats were initially FIV-positive and six more cats became infected during the course of the study, without evidence of having been bitten. The FIV infection did not adversely affect the cats' life expectancy.  相似文献   

5.
Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.  相似文献   

6.
To assess whether alpha‐1‐acid glycoprotein (AGP) can be detected on the membrane of feline circulating leucocytes. Design The presence of AGP on circulating leucocytes was investigated in both clinically healthy cats and cats with different diseases. A group of feline coronavirus (FCoV)‐positive cats, comprising cats with feline infectious peritonitis (FIP) and cats not affected by FIP but seropositive for FCoV, were included in this study because the serum concentration of AGP increases during FCoV infection. Procedure Flow cytometry (using an anti‐feline AGP antibody), serum protein electrophoresis, routine haematology and measurement of the serum AGP concentration were performed using blood samples from 32 healthy cats (19 FCoV‐seropositive), 13 cats with FIP and 12 with other diseases (6 FCoV‐seropositive). The proportion of cats with AGP‐positive leucocytes in the different groups (e.g. controls vs sick; FIP vs other diseases, etc.) or in cats with different intensities of inflammatory response was compared using a Chi‐square test. Results AGP‐positive leucocytes were found in 23% of cats. Compared with controls, the proportion of patients with positive granulocytes and monocytes was higher among sick cats (especially cats with diseases other than FIP) and cats with high serum AGP concentration, but not in cats with leucocytosis or that were FCoV‐seropositive. Conclusion AGP‐positive leucocytes can be found in feline blood, especially during inflammation. Conversely, no association between AGP‐positive leucocytes and FIP was found. Further studies are needed to elucidate the mechanism responsible for this finding and its diagnostic role in cats with inflammation.  相似文献   

7.
8.
9.
10.
Previous studies have demonstrated that the concentration of alpha1-acid glycoprotein (AGP) transiently increases in asymptomatic cats infected with feline coronavirus (FCoV). In order to establish whether these fluctuations depend on the FCoV status, the serum concentration of AGP and anti-FCoV antibody titres and/or faecal shedding of FCoVs in clinically healthy cats from catteries with different levels of prevalence of FCoV infection were monitored over time. Serum AGP concentrations fluctuated over time in clinically healthy cats from the cattery with the highest prevalence of feline infectious peritonitis (FIP) and significantly increased just before an outbreak of FIP. Further studies are required to clarify whether the observed increase of AGP concentration is a consequence of the increased viral burden or a protective response against mutated viral strains. Nevertheless, the results of the present study suggest that AGP might be useful in monitoring FCoV-host interactions in FCoV-endemic catteries.  相似文献   

11.
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.  相似文献   

12.
Feline coronaviruses (FCoV) vary widely in virulence causing a spectrum of clinical manifestations reaching from subclinical course to fatal feline infectious peritonitis (FIP). Independent of virulence variations they are separated into two different types, type I, the original FCoV, and type II, which is closely related to canine coronavirus (CCV). The prevalence of FCoV types in Austrian cat populations without FIP has been surveyed recently indicating that type I infections predominate. The distribution of FCoV types in cats, which had succumbed to FIP, however, was fairly unknown. PCR assays have been developed amplifying parts of the spike protein gene. Type-specific primer pairs were designed, generating PCR products of different sizes. A total of 94 organ pools of cats with histopathologically verified FIP was tested. A clear differentiation was achieved in 74 cats, 86% of them were type I positive, 7% type II positive, and 7% were positive for both types. These findings demonstrate that in FIP cases FCoV type I predominates, too, nonetheless, in 14% of the cases FCoV type II was detected, suggesting its causative involvement in cases of FIP.  相似文献   

13.
Cats with feline infectious peritonitis (FIP) are usually lymphopenic and have lymphoid depletion evident in spleen and lymph nodes. In particular, the number of CD4+ lymphocytes in tissues decreases during the evolution of FIP lesions. This decrease is most likely due to increased lymphocyte apoptotic rate. In contrast, cats infected with the Feline Coronavirus (FCoV) develop a follicular hyperplasia in the peripheral lymph nodes. The current study was devised to evaluate the possible pathogenic role of shifts in circulating lymphocyte subsets in FIP. Peripheral blood from cats with FIP was evaluated and compared with peripheral blood from clinically healthy cats living in both FCoV-free and FCoV-endemic catteries. Blood from cats with diseases other than FIP was also examined in order to define the diagnostic relevance of the changes. Lymphocyte subsets were analysed by flow cytometry, using a whole blood indirect immunofluorescence technique and mAbs specific for feline CD5, CD4, CD8, CD21. The results of the current study suggest that cats recently infected with FCoV that do not develop the disease have a transient increase in T cells; cats from groups with high prevalence of FIP have a moderate but persistent decrease in T cell subsets; cats with FIP have a very severe decrease in all the subsets of lymphocytes. Moreover, during FIP many lymphocytes do not express any membrane antigen, most likely due to early apoptosis. Cats with diseases other than FIP also had decreased number of lymphocytes: as a consequence, the diagnostic relevance of these findings is very low. Nevertheless, the lack of flow cytometric changes had a high negative predictive value (NPV), thus allowing to exclude FIP from the list of possible diagnoses in cats with normal cytograms.  相似文献   

14.
Natural feline coronavirus (FCoV) infection has been shown to not only induce intestinal infection with viral shedding, but also systemic infection which either remains without clinical signs or leads to feline infectious peritonitis (FIP). As systemic infection is not the key event in the development of FIP, the question arises as to whether a potential difference in viral load might be of importance. Therefore, the purpose of this study was to quantitatively assess feline coronavirus (FCoV) RNA loads in haemolymphatic tissues of healthy, long-term FCoV-infected cats and cats with FIP. In cats that died from FIP, viral loads were significantly higher, indicating a higher rate of viral replication or a reduced capacity for viral clearance in cats developing and/or suffering from FIP.  相似文献   

15.
Interferon gamma (IFN-γ) plays an important role in cell mediated responses against mutated feline coronavirus strains (FCoV) involved in the pathogenesis of feline infectious peritonitis (FIP). The aim of this study was to establish a combined in silico and in vitro approach to assess feline leukocyte production of IFN-γ in response to selected peptides of the nucleocapside protein (N) of FCoVs. To this aim, we designed, through a bioinformatic approach, 8 potentially immunogenic peptides from the protein N corresponding to sequences of residues 14, 182, 198 detected only in FCoVs from FIP cats (virulent strains), only in FCoVs from healthy cats (avirulent strains) and both in FIP and in healthy cats (mixed strains). The peptides or a sham solution were incubated with whole blood from 16 cats (7 healthy and 9 with chronic diseases other than FIP) and IFN-γ concentration was measured on plasma using an ELISA system. RT-PCR expression of IFN-γ mRNA was also evaluated after incubation of the peptides or a sham solution with whole blood from 4 clinically healthy cats. The mean plasma concentration of IFN-γ in samples incubated with peptides decreased and the expression of IFN-γmRNA did not change compared with the sham solution, except for some cats with chronic diseases (which probably have a "pre-activated" immune response). These cats responded to "avirulent" or "mixed" peptides by increasing the concentration of IFN-γ and the expression of IFN-γ mRNA. The combined approach employed in this study allowed us to identify potentially immunogenic peptides of FCoV N protein that can modulate the production of IFN-γ especially in cats with a "pre-activated" cell mediated response.  相似文献   

16.
OBJECTIVES: i) To establish the seroprevalence of Feline Coronavirus (FCoV) infection in two defined groups of cats in Sydney: owned and feral cats; ii) to identify factors associated with an increased risk of infection with FCoV; and iii) to establish the seroprevalence and FCoV antibody titres of owned cats with immunohistochemically confirmed feline infectious peritonitis (FIP). DESIGN: Prospective multi-institutional cross sectional study. Procedure Serum samples from owned cats presented to three inner city veterinary clinics in Sydney and feral cats from a colony in South Western Sydney over an 11-month period were tested for FCoV antibodies using the Immunocomb test kit. The relationship between serological score and six major factors (breed, age, gender, number of cats per household, living environment and health status) in the owned cat sample population was analysed and compared to cats with FIR RESULTS: The seroprevalence of FCoV infection in the sample population of owned and feral cats was 34% and 0%, respectively. The median Immunocomb scores of DSH, Persian, Siamese and Devon Rex cats were significantly lower than that of Burmese, BSH, Abyssinian, Birman, Ragdoll and Russian Blue. The median lmmunocomb score of pedigree cats less than 2 years-of-age was significantly higher than for pedigree cats greater than 2 years-of-age. This distinction was not evident in DSH cats in these age groups. The number of cats per household at the time of blood collection had a strong positive association with Immunocomb score. The median Immunocomb score of cats with immunohistochemically confirmed FIP was significantly higher than cats in the sample population of owned cats but there was sufficient overlap between these two groups to make definitive diagnosis of FIP by serology impossible. CONCLUSION: This represents the first seroprevalence study of FCoV in Australia. The major determinants of antibody score of owned cats identified in this study were breed, age and the number of cats per household. The significant relationship between the breed of the cat and the FCoV antibody titre further supports the notion, proposed previously by the authors, that breed related differences exist in the immunological response to FCoV infection.  相似文献   

17.
The aims of this study were to validate a colorimetric method to measure total sialic acid (TSA) in feline serum and to investigate the serum concentration of TSA in clinically healthy cats seronegative (n = 9) and seropositive (n = 48) for feline coronavirus (FCoV), and in cats affected by feline infectious peritonitis (FIP, n = 28), tumors (n = 20), or inflammation (n = 16). The correlation between TSA and α1-acid glycoprotein (AGP) was also investigated. The method employed in this study is precise and accurate at TSA levels (in mg/L) commonly encountered in feline serum. No significant differences between seropositive (385.6 ± 192.2 mg/L) and seronegative (433.5 ± 179.0 mg/L) cats were detectable, suggesting that the simple infection by FCoVs does not influence TSA levels. Compared with seropositive controls, the concentration of TSA was higher in cats with FIP (556.7 ± 268.3 mg/L, P = 0.003), tumors (522.5 ± 294.4 mg/L, P = 0.028), and inflammation (546.8 ± 208.3 mg/L, P = 0.018). The discriminating power of TSA for FIP is moderate (area under the ROC curve = 0.65) and the likelihood ratio is higher than 3.0 only at high TSA levels. Consequently, TSA could support a diagnosis of FIP only at extremely high serum concentration (> 800 mg/L) or when the pre-test probability of FIP is high. No correlations were found between the TSA and AGP concentrations in cats with FIP, suggesting that sialylated proteins other than AGP are present. Both the antibody titre and the degree of AGP sialylation were negatively correlated with TSA levels, suggesting that increased TSA may contribute to reduce the burden of FCoVs.  相似文献   

18.
Feline alpha(1)-acid glycoprotein (fAGP) increases during feline infectious peritonitis (FIP). We have recently identified a 29 kDa protein that we named feline AGP-related protein (fAGPrP) due to its cross-reactivity with an anti-human AGP monoclonal antibody. In this work we describe the tissue distribution of fAGPrP during FIP, and its relationship with feline coronavirus (FCoV) and myeloid cells. Tissues from five control cats and from 15 cats with FIP were examined by immunohistochemistry using monoclonal antibodies against human AGP, FCoV and myeloid antigens. Diffuse fAGPrP positivity within the lesions, likely due to vascular plasma leakage, endothelial and epithelial lining were detectable. Compared to controls, fAGPrP-expressing cells often increased in number and were diffusely distributed in lymph nodes, as usually occurs for IgM-producing plasma cells during early immune responses. These findings did not depend on the presence of FCoVs or of myeloid cells, suggesting that fAGPrP is not directly involved in the pathogenesis of FIP.  相似文献   

19.
The aim of this study was to quantify and compare interferon-γ (IFN-γ) concentrations in the serum of clinically normal cats infected with feline coronavirus (FCoV) with its concentration in the sera and effusions of cats with feline infectious peritonitis (FIP), a disease associated with infection with a mutated form of FCoV.Clinically normal FCoV-infected cats living in catteries with a high prevalence of FIP had the highest serum IFN-γ concentrations. The serum concentration of IFN-γ was not significantly different in cats with FIP compared with clinically normal FCoV-infected animals living in catteries with a low prevalence of the disease. Moreover, the concentration of IFN-γ was significantly higher in the effusions than in the serum of cats with FIP, probably due to IFN-γ production within lesions. These findings support the hypothesis that there is a strong, ‘systemic’ cell mediated immune response in clinically normal, FCoV-infected cats and that a similar process, albeit at a tissue level, is involved in the pathogenesis of FIP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号