首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the summers (July and August) of 2002-2005, we measured interannual variation in maximum carboxylation rate (V(cmax)) within a Fagus crenata Blume crown in relation to climate variables such as air temperature, daytime vapor pressure deficit (VPD) and daily photosynthetic photon flux, leaf nitrogen per unit area (N(a)) and leaf mass per unit area (LMA). Climatic conditions in the summers of 2002-2004 differed markedly, with warm and dry atmospheric conditions in 2002, cool, humid and cloudy conditions in 2003, and warm clear conditions in 2004. Conditions in summer 2005 were intermediate between those of summers 2002 and 2003, and similar to recent (8-year) means. In July, marked interannual variation in V(cmax) was mainly observed in leaves in the high-light environment (relative photon flux > 50%) within the crown. At the crown top, V(cmax) was about twofold higher in 2002 than in 2003, and V(cmax) values in 2004 and 2005 were intermediate between those in 2002 and 2003. In August, although interannual variation in V(cmax) among the years 2003, 2004 and 2005 was less, marked variation between 2002 and the other study years was evident. Multiple regression analysis of V(cmax) against the climate variables revealed that VPD of the previous 10-30 days had a significant influence on variability in V(cmax). Neither N(a), LMA nor leaf CO(2) conductance from the stomata to the carboxylation site explained the variability in V(cmax). Our results indicate that the long-term climatic response of V(cmax) should be considered when estimating forest carbon gain across the year.  相似文献   

2.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

3.
To examine the effects of different solar irradiances on leaf characteristics at the leaf primordium and expansion stages, we shaded parts of branches in the upper canopies of two adult beech trees, Fagus crenata Blume and Fagus japonica Maxim., for 4 years. The treatments during the leaf primordium and leaf expansion stages, respectively, were: (1) high light and high light (H, control), (2) high light and low light (HL), (3) low light and low light (LL), and (4) low light and high light (LH). Both number of cell layers in palisade tissue and individual leaf area were affected by the previous-year irradiance, whereas cell length of palisade tissue was larger in LH leaves than in LL leaves, suggesting determination by current-year irradiance. Lamina chlorophyll/nitrogen ratio was higher in HL and LL leaves than in LH leaves, suggesting determination by current-year irradiance. Diurnal minimum values of leaf water potential measured under sunlit conditions were lower in H and LH leaves than in HL and LL leaves. Effective osmotic adjustment was found in H and LH leaves, suggesting that leaf water relations were affected by current-year irradiance. Net photosynthetic rate and stomatal conductance measured under sunlight conditions were higher in H and LH leaves than in HL and LL leaves. Thus, effects of current-year irradiance had a greater effect on leaf-area-based daily carbon gain than previous-year irradiance.  相似文献   

4.
Interspecific competition is a key process determining the dynamics of mixed forest stands and influencing the yield of multispecies tree plantations. Trees can respond to competitive pressure from neighbors by crown plasticity, thereby avoiding competition. We employed a high-resolution ground-based laser scanner to analyze the 3-dimensional extensions and shape of the tree crowns in a near-natural broad-leaved mixed forest in order to quantify the direction and degree of crown asymmetry of 15 trees (Fagus sylvatica, Fraxinus excelsior, Carpinus betulus) in detail. We also scanned the direct neighbors and analyzed the distance of their crown centres and the crown shape with the aim to predict the crown asymmetry of the focal tree from competition-relevant attributes of its neighbors. It was found that the combination of two parameters, one summarizing the size of the neighbor (DBH) and one describing the distance to the neighbor tree (HD), was most suitable for characterizing the strength of the competitive interaction exerted on a target tree by a given neighbor. By summing up the virtual competitive pressure of all neighbors in a single competitive pressure vector, we were able to predict the direction of crown asymmetry of the focal tree with an accuracy of 96° on the full circle (360°).The competitive pressure model was equally applicable to beech, ash and hornbeam trees and may generate valuable insight into competitive interactions among tree crowns in mixed stands, provided that sufficiently precise data on the shape and position of the tree crowns is available. Multiple-aspect laser-scanning proved to be an accurate and practicable approach for analyzing the complex 3-dimensional shape of the tree crowns, needed to quantify the plasticity of growth processes in the canopy. We conclude that the laser-based analysis of crown plasticity offers the opportunity to achieve a better understanding of the dynamics of canopy space exploration and also may produce valuable advice for the silvicultural management of mixed stands.  相似文献   

5.
Crown form, vertical changes in branch inclination and vertical distribution of foliage density in a young sugi (Crytomeria japonica D. Don) stand were analyzed using allometric equations. Tall trees had deeper crowns than short trees, whereas the crown diameters of both tall and short trees were similar. Apical roundness was more pronounced in the lower-story trees, which were characterized by umbrella-shaped crowns. The vertical distribution of foliage density was approximated by a nearly symmetrical curve. Tall trees had higher spatial densities of foliage than short trees. Branch inclination also varied significantly with tree height. The middle-story trees had the largest branch inclinations and the lower-story trees had the smallest branch inclinations. Even in young uniform stands, crown morphology and structure were modified in response to the light environment.  相似文献   

6.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

7.
Seasonal changes in the N and P content of foliage in a young forest of Fagus sylvatica were measured. Leaves from branches of the upper and lower crown of dominant trees and from suppressed trees were compared. Nutrient retranslocation rates during senescence differed considerably between trees. This variation appeared not to be related to any differences in environmental factors or tree vigour, and was probably genetically induced. In dominant trees the most efficient retranslocation of N was recorded in the upper crown and probably resulted from higher leaf temperatures and a longer senescent period in the sun leaves than in the shade leaves. Phosphorus retranslocation efficiency was higher in suppressed trees than in dominant ones, but no such tendency was observed with N. The most obvious difference between leaves at different crown levels concerned the time at which P translocation began; an outflow of P from leaves in the lower crown began in June, while in the upper crown this outflow did not begin until September/October.  相似文献   

8.
Leaf and crown morphology of shade-tolerant sugar maple (Acer saccharum Marsh.) were examined to test the hypotheses (1) that leaf area exhibits significant plasticity both within and between crown classes and individual tree crowns and (2) that leaf area is accurately predicted from estimates of crown volume. A total of 18 trees, ranging from 3.3 to 43.4 cm dbh, were felled and dissected into upper, middle, lower, and below-crown layers, for measurements of leaf, bark, and xylem dimensions. For dominant trees only, bark thickness and xylem radii were higher within the crown than below the crown. Cumulative leaf area index increased with decreasing stratum height at similar rates in all trees, except for two trees that were located in the understory. Area leaf weight declined with decreasing stratum height within the crown of all except four overstory trees. These four trees showed an increase with decreasing stratum height, i.e., leaves were heavier per unit area in the lower crown stratum and below the crown than they were at mid-crown. Within-tree leaf area density was usually higher in the upper crown of overstory trees and in the lower crown of understory trees. Total crown volume was the best predictor of whole-tree leaf area, but it was only slightly better than dbh.  相似文献   

9.
As a tree management tool, three treatments of crown pruning (total-pruning, half-pruning and no-pruning) were applied to Vitellaria paradoxa (karité) and Parkia biglobosa (néré) in agroforestry parkland systems in Burkina Faso. The area under each tree was divided into four concentric tree influence zones (Zones A: up to 2 m from the tree trunk, B: up to half of the radius of the tree crown, C: up to the edge of the tree crown and D: up to 2 m away from the edge of the tree crown). Millet production under these zones and outside was assessed during two cropping seasons over the study period of three years and the results showed that tree crown pruning had significant effect on millet production and the highest millet grain yield and total dry matter were produced under total-pruned trees (507 ± 49 and 2033 ± 236 kg ha−1 year−1, respectively). Light transmission, transpiration and soil nutrient status under the trees were also analysed in relation to millet production. The results of the analysis showed that total-pruned trees gave the highest millet production due to the reduction by crown pruning of the effects of large tree crowns on PAR transmission below crowns and rates of transpiration by trees. Soil was more fertile closer to the tree trunks than outside tree crowns. This may also be one of the reasons why millet overall performed better under Zone B than outside tree crowns. The higher production of millet under Zone B than under Zone A, the zone closer to the tree trunk, may be due to lower light intensity and more intense competition for water between trees and crops under Zone A. It was concluded that at least in the short term millet production could be improved by crown pruning of both karité and néré, but long term effects may depend on the ability of the trees to maintain the amelioration of soil fertility and on how quickly the trees recover from pruning. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
In the temperate zone of Japan, Pinus densiflora Sieb. et Zucc. bears needles of up to three age classes in the upper crown and up to five age classes in the lower crown. To elucidate the effects of leaf age on photosynthetic parameters and its relationships with leaf mass per unit area (LMA) and leaf nitrogen (N(l)) concentration on an area (N(a)) and mass (N(m)) basis, we measured seasonal variations in LMA, N(l), light-saturated photosynthetic rate (A(max)), stomatal conductance (g(s)), maximum rate of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) in leaves of all age classes in the upper and lower crown. Leaf mass per unit area increased by 27% with increasing leaf age in the lower crown, but LMA did not depend on age in the upper crown. Leaf age had a significant effect on N(m) but not on N(a) in both crown positions, indicating that decreases in N(m) resulted from dilution. Photosynthetic parameters decreased significantly with leaf age in the lower crown (39% for A(max) and 43% for V(cmax)), but the effect of leaf age was not as great in the upper crown, although these parameters exhibited seasonal variation in both crown positions. Regression analysis indicated a close relationship between LMA and N(a), regardless of age class or when each age class was pooled (r(2) = 0.57-0.86). Relationships between LMA and N(a) and among A(max), V(cmax) and J(max) were weak or not significant when all age classes were examined by regression analysis. However, compared with older leaves, relationships among LMA, N(a) and A(max) were stronger in younger leaves. These results indicate that changes in LMA and N(l) mainly reflect light acclimation during leaf development, but they are only slightly affected by irradiance in mature leaves. In conclusion, LMA and N(l) are useful parameters for estimating photosynthetic capacity, but age-related effects need to be taken into account, especially in evergreen conifers.  相似文献   

12.
Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.  相似文献   

13.
Sterck F  Schieving F 《Tree physiology》2011,31(9):1024-1037
Forest trees show large changes in functional traits as they develop from a sapling in the shaded understorey to an adult in the light-exposed canopy. The adaptive function of such changes remains poorly understood. The carbon gain hypothesis suggests that these changes should be adaptive (acclimation) and that they serve to maximize net vegetative or reproductive growth. We explore the carbon gain hypothesis using a mechanistic model that combines an above-ground plant structure, a biochemical photosynthesis model and a biophysical stomatal conductance model. Our simulations show how forest trees that maximize their carbon gain increase their total leaf area, sapwood area and leaf photosynthetic capacity with tree height and light intensity. In turn, they show how forest trees increased crown stomatal conductance and transpiration, and how the carbon budget was affected. These responses in functional traits to tree height (and light availability) largely differed from the responses exhibited by exposed trees. Forest and exposed trees nevertheless shared a number of emergent patterns: they showed a similar decrease in the average leaf water potential and intercellular CO(2) concentration with tree height, and kept almost constant values for the ratio of light absorption to electron transport capacity, the ratio of photosynthetic capacity to water supply capacity, and nitrogen partitioning between electron transport and carboxylation. While most of the predicted qualitative responses in individual traits are consistent with field or lab observations, the empirical support for capacity balances is scarce. We conclude that modelling functional trait optimization and carbon gain maximization from underlying physiological processes and trade-offs generates a set of predictions for functional trait acclimation and maintenance of capacity balances of trees of different height in a forest light gradient, but actual tests of the predicted patterns are still scarce.  相似文献   

14.
Leaf nutrition and photosynthetic performance of sugar maple (Acer saccharum Marsh.) were compared between two sugar maple stands in northwestern Vermont with contrasting health conditions as indicated by annual basal area growth, degree of crown dieback, and foliar appearance. Observations made during the diurnal cycle of both stands showed no apparent leaf water stress. In both stands, leaves had similar concentrations of major non-structural carbohydrates (starch and sucrose). Over two consecutive growing seasons (1991 and 1992), we consistently observed lower leaf Ca and Mg concentrations in the declining stand than in the healthy stand. Compared with the healthy stand, lower leaf chlorophyll concentrations and apparent leaf chlorosis were observed in the declining stand, and some trees had very low foliar Ca and Mg concentrations (0.31 +/- 0.03% and 0.09 +/- 0.01%, respectively). Trees in the declining stand had lower light-saturated net photosynthetic rates on a dry mass basis at both ambient CO(2) (P(n,amb)) and saturating CO(2) (P(n,sat)) than trees in the healthy stand. There were significant linear correlations between P(n,amb) and leaf mass per unit area (LMA) and between P(n,sat) per unit leaf area and LMA. There were also linear correlations between both P(n,amb) and P(n,sat) and leaf N when expressed on an area basis in both stands, indicating that variation in LMA may have been largely responsible for the observed photosynthesis-nitrogen relationship. The values of P(n,amb) and P(n,sat) were not significantly correlated with leaf N on a mass basis but were weakly correlated with leaf Ca and Mg on a mass basis. We conclude that low leaf Ca or Mg concentrations may limit leaf CO(2) assimilation and tree carbohydrate status in the declining stand.  相似文献   

15.
How long forest trees can sustain wood production with increasing age remains an open question, primarily because whole-crown structure and growth cannot be readily measured from the ground or on felled trees. We climbed and directly measured crown structures and growth rates of 43 un-suppressed individuals (site trees) of the two tallest species – Eucalyptus regnans and Sequoia sempervirens – representing a wide range of tree sizes and ages. In both species, ground-level measurements of annual growth, including height, ring width, and basal area increment, exhibited the oft-reported trend of decreasing growth (or no change in growth) with age, yet wood production of the entire main trunk and whole crown both increased with size and age up to and including the largest and oldest trees we measured. The balance between structural metrics of whole-crown respiratory demands (cambium area, inner bark volume, sapwood volume, and heartwood deposition area) and photosynthetic capacity (leaf area and green bark area) was statistically independent of size but not age. After accounting for the effect of size, trees with lower potential respiratory demands grew more than trees with higher potential respiratory demands per unit photosynthetic area. The strongest determinant of tree energy balance was the ratio of aboveground cambium area to leaf area. Among the site trees we examined, over 85% of the variation in annual wood production was explained by variation in size, and the proportion of total aboveground wood production in appendages (branches, limbs, and reiterated trunks) increased linearly with size. With increasing age in both species, the proportion of annual wood production converted to heartwood increased in main trunks and appendages. The oldest tree we measured produced more heartwood in its main trunk over 651 years (351 m3) than contained in any tree we measured <1500 years old. The two tallest tree species achieve similar stature despite divergent growth dynamics and ecologies. At one extreme, E. regnans attains great size quickly but dies relatively young because trees are susceptible to fire and fungi. At the other extreme, S. sempervirens attains great size more slowly but has a long lifespan because trees resist fire and prioritize investment in decay-resistant heartwood. Increasing wood production as trees age is a mechanism underlying the maintenance of biomass accumulation during forest development and the carbon-sink capacity of old-growth forests.  相似文献   

16.
Chronic decline and Sudden death are two syndromes of cork oak (Quercus suber) dieback. Mortality is associated with water stress, but underlying physiological mechanisms are poorly understood. Here, we investigated the physiological performance of declining trees during the summer drought. Leaf water potential, gas-exchange, fluorescence of photosystem II and leaf and root starch concentration were compared in healthy (asymptomatic) and declining trees. Low annual cork increment in declining trees indicated tree decline for several years. All trees showed similar water status in spring. In summer, declining trees showed lower predawn leaf water potential (?2.0 vs. ?0.8 MPa), but unexpectedly higher midday leaf water potential than healthy trees (?2.8 vs. ?3.3 MPa). The higher midday water potential was linked to by means of strongly reduced stomatal conductance and, consequently, transpiration. This study is pioneer showing that declining trees had high midday water potential. A tendency for lower sap flow driving force (the difference between predawn and midday water potential) in declining trees was also associated with reduced photosynthesis, suggesting that chronic dieback may be associated with low carbon uptake. However, starch in roots and leaves was very low and not correlated to the health status of trees. Declining trees showed lower water-use efficiency and non-photochemical quenching in summer, indicating less resistance to drought. Contrarily to chronic decline, one tree that underwent sudden death presented predawn leaf water potential below the cavitation threshold.  相似文献   

17.
Few tree size/leaf area correlations have been produced for hardwoods, where the extrapolation from individual branches to the whole tree is less straightforward than in conifers with more regular branching patterns. We used randomized branch sampling to estimate leaf area of European beech (Fagus sylvatica L.) trees of different stands, ages and areas in Austria. Cross-sectional areas (CSA) predicted 87–92% of leaf area variation, the best predictor being the sum of branch CSA. Leaf area was somewhat better correlated with CSA at breast height than at the base of the crown, and using sapwood instead of total CSA made little difference. While there was no effect of growth area, a stepwise regression model showed that dominant trees in pole-stage had, for unclear reasons, significantly higher leaf area/CSA relationships. A comparison with regressions produced from smaller beech trees in other parts of Europe suggests that the leaf area/basal area regression is generally valid for beech in central Europe.  相似文献   

18.
Spann TM  Beede RH  Dejong TM 《Tree physiology》2007,27(8):1189-1196
Effects of rootstock, shoot carbohydrate status, crop load and crown position on the number of preformed leaf primordia in the dormant terminal and lateral buds of mature and immature 'Kerman' pistachio (Pistacia vera L.) trees were investigated to determine if rootstock vigor is associated with greater shoot preformation. There was no significant variation in preformation related to the factors studied, suggesting strong genetic control of preformation in 'Kerman' pistachio. The growth differences observed among trees on different rootstocks were associated with greater stimulation of neoformed growth in trees on the more vigorous rootstocks. However, most annual extension growth in mature tree crowns was preformed, contrasting with the relatively high rate of neoformation found in young tree crowns. Large amounts of neoformed growth in young trees may allow the trees to become established quickly and secure resources, whereas predominantly preformed growth in mature trees may allow for continued crown expansion without outgrowing available resources. We hypothesized that the stimulation of neoformed growth by the more vigorous rootstocks is associated with greater resource uptake or transport, or both. Understanding the source of variation in shoot extension growth on different rootstocks has important implications for orchard management practices.  相似文献   

19.
Sorghum (Sorghum bicolor L. Moench) production in 15 transect blocks, each with a karité (Vitellaria paradoxa C. F. Gaertn.) tree at each end, was evaluated on-farm in a village of southern Burkina Faso in a season of below-average rainfall. Under tree crowns, plant height and grain yield were significantly lower, by a factor of 16% for grain yield, than elsewhere in transects. In addition, mean plant height, and mean biomass and grain production per area as well as per plant were higher at the outside edge of tree crowns than in the middle of the field. Soil moisture content decreased significantly with increasing distance from the tree in the 0–20 cm soil layer. Top soils were also richer in organic carbon and potassium around tree crowns than in the middle of blocks. Sorghum performance in the zone under and around canopies was projected at field scale and compared to central transect controls. Grain production in karité parklands was higher with trees of mean crown radii of 225 to 275 cm, average densities of 12 and 31 trees/ha than in areas without trees. Therefore, farmers do not improve cereal production by reducing parkland tree densities below these levels. When nut production is included in the analysis, maintaining trees in fields can be economically advantageous at all densities.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号