首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment budgets have been established for two small (<4 km2), lowland, agricultural catchments, by using 137Cs measurements, sediment source fingerprinting and more traditional monitoring techniques to quantify the individual components of the budget. The gross and net erosion rates for the fields on the catchment slopes were estimated using 137Cs measurements within selected fields, which encompassed a representative range of slope angles, slope lengths and land use. These estimates were extrapolated over the entire catchment, using a simple topographically driven soil erosion model (Terrain-Based GIS, TBGIS) superimposed on a DEM, to derive catchment average gross and net erosion rates. Suspended sediment yields were measured at the catchment outlets and sediment source fingerprinting techniques were used to establish the relative contributions from the catchment surface, subsurface tile drains and eroding channel banks to the sediment yields. In-channel and wetland storage were quantified using both direct measurements and 137Cs measurements. The sediment budgets established for the catchments highlighted the importance of subsurface tile drains as a pathway for sediment transfer, accounting for ca. 60% and 30% of the sediment output from the two catchments. Erosion from channel banks contributed ca. 10% and 6% of the sediment output from the two catchments. Although the suspended sediment yields from these catchments were considered high by UK standards (ca. 90 t km−2 year−1), the sediment delivery ratios ranged between 14% and 27%, indicating that a major proportion of the mobilised sediment was stored within the catchments. In-field and field-to-channel storage were shown to be of similar magnitude, but storage of sediment in the channel system and associated wetlands was relatively small, representing <5% of the annual suspended sediment yield.  相似文献   

2.
Increasing concern for problems of soil degradation and the off‐site impacts of accelerated erosion has generated a need for improved methods of estimating rates and patterns of soil erosion by water. The use of environmental radionuclides, particularly 137Cs, to estimate erosion rates has attracted increased attention and the approach has been shown to possess several important advantages. However, the use of 137Cs measurements to estimate erosion rates introduces one important uncertainty, namely, the need to employ a conversion model or relationship to convert the measured reduction in the 137Cs inventory to an estimate of the erosion rate. There have been few attempts to validate these theoretical conversion models and the resulting erosion rate estimates. However, there is an important need for such validation, if the 137Cs approach is to be more widely applied and reliance is to be placed on the results obtained. This paper reports the results of a study aimed at validating the use of two theoretical conversion models, namely the exponential depth distribution model and the diffusion and migration model, that have been used in several recent studies to convert measurements of 137Cs inventories on uncultivated soils to estimates of soil erosion rates. The study is based on data assembled for two small catchments (1.38 and 1.65 ha) in Calabria, southern Italy, for which measurements of sediment output are available for the catchment outlet. The two catchments differ in terms of the steepness of their terrain, and this difference is reflected by their sediment yields. Because there is no evidence of significant deposition within the two catchments, sediment delivery ratios close to 1.0 can be assumed. It is therefore possible to make a direct comparison between the estimates of the mean annual erosion rates within the two catchments derived from 137Cs measurements and the measured sediment outputs. The results of the comparison show that the erosion rate estimates provided by both models are reasonably consistent with the measured sediment yields at the catchment outlets. However, more detailed assessment of the results shows that the validity of the erosion rate estimates is influenced by the magnitude of the erosion rates within the catchment. The exponential depth distribution model appears to perform better for the catchment with higher erosion rates and to overestimate erosion rates in the other catchment. Similarly, the basic migration and diffusion model performs better for the catchment with lower erosion rates and overestimates erosion rates in the other catchment. However, the improved migration and diffusion model appears to perform satisfactorily for both catchments. There is a need for further studies to extend such independent validation of the 137Cs technique to other environments, including cultivated soils, and to other conversion models and procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Water erosion in the hilly areas of west China is the main process contributing to the overall sediment of the Yellow River and the Yangtze River. The impact of gully erosion in total sediment output has been mostly neglected. Our objective was to assess the sediment production and sediment sources at both the hillslope and catchment scales in the Yangjuangou reservoir catchment of the Chinese Loess Plateau, northwest China. Distribution patterns in sediment production caused by water erosion on hills and gully slopes under different land use types were assessed using the fallout 137Cs technique. The total sediment production from the catchment was estimated by using the sediment record in a reservoir. Sediment sources and dominant water erosion processes were determined by comparing 137Cs activities and 210Pb/137Cs ratios in surface soils and sub-surface soils with those of sediment deposits from the reservoir at the outlet of the catchment. Results indicated that landscape location had the most significant impact on sediment production for cultivated hillslopes, followed by the terraced hillslope, and the least for the vegetated hillslope. Sediment production increased in the following order: top>upper>lower>middle for the cultivated hillslope, and top>lower>upper>middle for the terraced hillslope. The mean value of sediment production declined by 49% for the terraced hillslope and by 80% for the vegetated hillslope compared with the cultivated hillslope. Vegetated gully slope reduced the sediment production by 38% compared with the cultivated gully slope. These data demonstrate the effectiveness of terracing and perennial vegetation cover in controlling sediment delivery at a hillslope scale. Averaged 137Cs activities and 210Pb/137Cs ratios in the 0–5 cm surface soil (2.22–4.70 Bq kg−1 and 20.70–22.07, respectively) and in the 5–30 cm subsoil (2.60 Bq kg−1 and 28.57, respectively) on the cultivated hills and gully slopes were close to those of the deposited sediment in the reservoir (3.37 Bq kg−1 and 29.08, respectively). These results suggest that the main sediment sources in the catchment were from the surface soil and subsoil on the cultivated slopes, and that gully erosion is the dominant water erosion process contributing sediment in the study area. Changes in land use types can greatly affect sediment production from gully erosion. An increase in grassland and forestland by 42%, and a corresponding decrease in farmland by 46%, reduced sediment production by 31% in the catchment.  相似文献   

4.
Annual soil losses in southern Italy can exceed 100–150 t ha− 1 year− 1. Where erosion on agricultural land is particularly severe, land use change and afforestation are frequently seen as the most appropriate means of reducing erosion risk. However, the overall effectiveness of afforestation in reducing soil erosion remains uncertain, due to the poor development of the forest cover in some areas, leading to significant areas with sparse tree cover, and the erosional impact of forest harvesting, which commonly involves clearcutting. The study reported here addresses this uncertainty and focuses on two small catchments (W2 and W3) located in Calabria, southern Italy, for which measurements of suspended sediment yield are available. Both the catchments originally supported a rangeland vegetation cover and they were planted with eucalyptus trees in 1968. Currently, only catchment W3 supports a continuous forest cover. In catchment W2 the forest cover is discontinuous and there is a significant area of the catchment (ca. 20%) where the tree cover is sparse and the vegetation cover is dominated by natural grasses. Two additional erosion plots were established within catchment W2 in 1991, in order to explore the effect of the density of the tree cover on soil erosion. Information on the sediment yields from the two catchments and the plots for 10 storm events that occurred during the period December 2005–December 2006 and associated information on the 137Cs and excess 210Pb of the sediment, have been used to investigate the effectiveness of afforestation in reducing sediment mobilisation and net soil loss from the catchments involved. The results demonstrate that the areas of greatest soil loss are associated with the slopes where the tree cover is discontinuous, and that forest harvesting by clearcutting causes significant short-term increases in sediment mobilisation and sediment yield. These findings, which are consistent with previous work undertaken within the same area, emphasize the importance of vegetation cover density in influencing rates of soil loss in the study catchments. The study also provided a useful demonstration of the potential for using measurements of the 137Cs and 210Pbex content of sediment, in combination with more traditional sediment monitoring, to investigate sediment sources and to compare the sediment dynamics of catchments subjected to different land management practices.  相似文献   

5.
The sediment budget is a key concept and tool for characterizing the mobilization, transfer and storage of fine sediment within a catchment. Caesium‐137 measurements can provide valuable information on gross and net erosion rates associated with sheet and rill erosion that can be used to establish the slope component of a catchment sediment budget. However, there is a need to validate the use of 137Cs measurements for this purpose, because their reliability has sometimes been questioned. The study reported focuses on a small (3·04 ha) steepland (mean slope 37%) catchment in Southern Italy. It exploits the availability of information on the medium‐term sediment output from the catchment provided by the construction of a reservoir at its outlet in 1978 and the existence of estimates of soil redistribution rates derived from 137Cs measurements made on 68 replicate soil cores collected from the slopes of a substantial proportion of the catchment in 2001, to validate the use of 137Cs measurements to construct the slope component of the catchment sediment budget. An additional 50 replicate soil cores were collected from the catchment slopes for 137Cs analysis, to complement the data already available. Nine cores collected from the area occupied by the reservoir were used to estimate the mean annual sediment input to the reservoir. In the absence of evidence that the poorly developed channel system in the catchment was either a significant sediment source or sink, it was possible to directly compare the estimate of net soil loss from the catchment slopes (7·33 Mg ha−1 y−1) with the estimate of sediment output from the catchment provided by the reservoir deposits (7·52 Mg ha−1 y−1). Taking account of the uncertainties involved, the close agreement of the two values is seen as providing a convincing validation of the use of 137Cs measurements to both estimate soil redistribution rates and as a basis for constructing the slope component of the sediment budget of a small catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Vast areas of Europe were contaminated by the Chernobyl-derived 137Cs in April–May 1986. This paper reports a detailed study of the post-fallout 137Cs redistribution within a 1 ha field located in the Chasovenkov Verh catchment in the northern part of the Middle-Russian upland. Particular attention was paid to the study of reference inventories. It is shown that the random spatial variability of 137Cs is similar within undisturbed and cultivated parts of a flat interfluve. Systematic spatial variability is not essential for a relatively short (200 m) topographical unit with simple relief. The analysis of a soil redistribution pattern within the study field using the Chernobyl 137Cs technique demonstrates that it is possible to identify areas of soil loss/gain. This pattern does not reflect soil redistribution for the whole field, because these have been only 12 years since the Chernobyl accident. Net erosion rates based on 137Cs method were comparable to soil losses directly measured at the study field.  相似文献   

7.
Wind erosion has degraded over one-half billion hectares of land worldwide. 137Cesium (137Cs) has been used as a tracer to study long-term rates of soil redistribution by water and, to a lesser extent, by wind. Early studies assumed that the decline in 137Cs activity for a potentially eroded soil relative to that for an uneroded soil was linearly proportional to soil loss. More recently, models have emerged that consider the effects of soil cultivation and the particle surface area-dependent partitioning of 137Cs on soils. We investigated the partitioning of 137Cs in wind-eroded sediments and with soil surface samples sieved into contiguous ranges of particle sizes. We also compared the 137Cs activities and stratification of several adjacent soils with known wind erosion and deposition histories. Finally, we tested 137Cs-based soil loss models with measured data from sites with documented histories. 137Cs activities and mean particle diameters of aeolian samples agreed well with the 137Cs activities and respective mean diameters of the sieved surface soil samples. Good agreement between model estimations and measured data indicated that 137Cs models developed to estimate soil redistribution by water were also applicable to soil redistribution by wind provided that the models contained an appropriate particle size correction parameter.  相似文献   

8.
The purpose of this research was to evaluate the applicability of conventional 137Cs sampling and a simplified approach, for estimating medium-term tillage- and water-induced soil erosion and sedimentation rates on agricultural land in Chile. For this purpose, four study sites under contrasting land use and management were selected in central-south Chile. First, a conventional 137Cs approach, based on grid sampling was applied, adapting a mass balance conversion model incorporating soil movement by tillage to the site specific conditions of the study region. Secondly, using the same conversion model, the feasibility of estimating soil redistribution rates from measurements of 137Cs inventories based on composite soil samples taken along contour lines was also tested at all four sites. The redistribution rates associated with tillage and water and the total rates estimated using both methods correlated strongly at all four sites. The conventional method provides more detailed information concerning the redistribution processes operating over the landscape. The simplified method is suitable for assessing soil loss and sediment accumulation in areas exhibiting simple topography and almost similar slopes along the contour lines. Under these conditions, this method permits faster estimation of soil redistribution rates, providing the possibility of estimating soil redistribution rates over larger areas in a shorter time. In order to optimise the costs and benefits of the methods, the sampling and inventory quantification strategy must be selected according to the resolution of the required information, and the scale and complexity of the landscape relief. Higher tillage- and water-induced erosion rates were observed in the annually ploughed cropland sites than in the semi-permanent grassland sites. Subsistence managed crop and grassland sites also show greater erosion effects than the commercially managed sites. The 137Cs methods used permit discrimination between redistribution rates observed on agricultural land under different land use and management. The 137Cs technique must be seen as an efficient method for estimating medium-term soil redistribution rates, and for planning soil conservation and sustainable agricultural production under the climatic conditions and the soil type of the region of Chile investigated.  相似文献   

9.
Validation of spatially distributed models using spatially distributed data represents a vital element in the development process; however, it is rarely undertaken. To a large extent, this reflects the problems associated with assembling erosion rate data, at appropriate temporal and spatial scales and with a suitable spatial resolution, for comparison with model results. The caesium-137 (137Cs) technique would appear to offer considerable potential for meeting this need for data, at least for longer timescales. Nevertheless, initial attempts to use 137Cs for model validation did not prove successful. This lack of success may be explained by the important role of tillage erosion in redistributing soil within agricultural fields and, therefore, contributing to the 137Cs-derived soil redistribution rates. This paper examines the implications of tillage erosion for the use of 137Cs in erosion model validation and presents an outline methodology for the use of 137Cs in model validation. This methodology acknowledges and addresses the constraints imposed by the need to: (1) separate water and tillage erosion contributions to total soil redistribution as represented in 137Cs derived rates; (2) account for lateral mixing of 137Cs within fields as a result of tillage translocation; (3) simulate long-term water erosion rates using the model under evaluation if 137Cs-derived water erosion rates are to be used in model validation. The methodology is dependent on accurate simulation of tillage erosion and tillage translocation. Therefore, as greater understanding of tillage erosion is obtained, the potential for the use of 137Cs in water erosion model validation will increase. Caesium-137 measurements remain one of the few sources of spatially distributed erosion information and, therefore, their potential value should be exploited to the full.  相似文献   

10.
Buyukcekmece Reservoir, located in the western outskirts of Istanbul, is one of the major water resources of Istanbul, and supplies drinking water to about 4 million people. Erosion in the catchment of the reservoir is an important problem in terms of its longer-term sustainability for water supply. There is an urgent need to obtain reliable quantitative data regarding erosion and deposition rates within the catchment to assess the magnitude of the problem and to plan catchment management strategies. In the absence of existing data, attention has focussed on the potential for using 137Cs measurements to provide retrospective estimates of medium-term soil erosion rates within the catchment over the past ca. 40 years. To date, the 137Cs approach has not been used to document soil redistribution rates in Turkey and this contribution reports an attempt to confirm the viability of the approach and the results of a preliminary investigation of rates of soil loss from uncultivated areas within the catchment. The soil redistribution rates estimated using the profile distribution conversion model varied from − 16.11 (erosion) to 4.59 (deposition) t/ha/year.  相似文献   

11.
Development of improved soil erosion and sediment yield prediction technology is required to provide catchment stakeholders with the tools they need to evaluate the impact of various management strategies on soil loss and sediment yield in order to plan for the optimal use of the land. In this paper, a newly developed approach is presented to predict the sources of sediment reaching the stream network within Masinga, a large‐scale rural catchment in Kenya. The study applies the revised universal soil loss equation (RUSLE) and a developed hillslope sediment delivery distributed (HSDD) model embedded in a geographical information system (GIS). The HSDD model estimates the sediment delivery ratio (SDR) on a cell‐by‐cell basis using the concept of runoff travel time as a function of catchment characteristics. The model performance was verified by comparing predicted and measured plot runoff and sediment yield. The results show a fairly good relationship between predicted and measured sediment yield (R2=0·82). The predicted results show that the developed modelling approach can be used as a major tool to estimate spatial soil erosion and sediment yield at a catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
[目的]探讨用~(137)Cs示踪技术估算土壤侵蚀量方法(以下简称"~(137)Cs示踪方法")所存在的几个关键问题,促进该方法的标准化和系统化。[方法]对大量已发表的相关文献进行分析,根据作者的研究经验,归纳出~(137)Cs示踪方法在实践应用中所存在的核心问题。[结果]~(137)Cs示踪方法中关于~(137)Cs在空间是均匀分布的假设存在不合理性,不能直接用于定量估算单钻点取样的土壤侵蚀量。~(137)Cs活度的空间变化存在随机性的成分。敏感度和不确定性分析结果证明~(137)Cs活度的空间随机变化量是~(137)Cs示踪方法不确性的最大来源。[结论]可以用多钻点样本平均值来减少~(137)Cs随机变化量所引起的侵蚀估算误差。以统计学为基础的试验设计和采取独立样本的办法可以消除该误差。虽然~(137)Cs模型已被广泛应用,但由于缺乏长期观测资料诸多模型还处在理论研究阶段,没有得到严格的验证和评判。因为不同模型估算的侵蚀量差别甚大,模型验证和筛选对该方法的成功运用至关重要。  相似文献   

13.
Quantitative assessment of soil redistribution in landscapes remains a challenging task. In this study we used radioactive soil redistribution tracer 137Cs together with soil morphological characteristics and empirically-based modeling for quantitative assessment of long-term soil conservation effectiveness. Three pairs of arable slopes were selected, all located within the territory of the Novosil experimental station (the Orel Region, central European Russia). One slope in each pair undergone creation of artificial terraces with forest shelter belts located parallel to topography contour lines and spaced at approximately 100 m from each other.Preliminary results have shown that slopes with soil-protective measures are characterized by a 11–80% reduction of average soil redistribution rates, as shown by soil profile morphology and 137Cs methods. Discrepancy in values obtained can be attributed to differences in temporal resolution of methods as well as possible influence of individual extreme events on results yielded by the 137Cs method. On the other hand, more significant decrease in average soil degradation rates on slopes with soil conservation (62–75% for each pair of slopes) was predicted by the model.The 137Cs method overestimates gross and net soil redistribution rates, as a result of the influence of extreme erosion prior to tillage mixing of a fresh fallout isotope, not accounted for by calibration models used. Another shortcoming of the estimations obtained is that sediment redeposition directly within forest belts was not taken into account. Therefore, net erosion rates obtained for slopes with forest belts should be regarded as overestimation. Nevertheless, it can be generally concluded that the multi-technical approach has allowed acquiring much more detailed information on temporal and spatial variability of soil redistribution rates than single method-based studies.  相似文献   

14.
Most regional‐scale soil erosion models are spatially lumped and hence have limited application to practical problems such as the evaluation of the spatial variability of soil erosion and sediment delivery within a catchment. Therefore, the objectives of this study were as follows: (i) to calibrate and assess the performance of a spatially distributed WATEM/SEDEM model in predicting absolute sediment yield and specific sediment yield from 12 catchments in Tigray (Ethiopia) by using two different sediment transport capacity equations (original and modified) and (ii) to assess the performance of WATEM/SEDEM for the identification of critical sediment source areas needed for targeting catchment management. The performance of the two model versions for sediment yield was found promising for the 12 catchments. For both versions, model performance for the nine catchments with limited gully erosion was clearly better than the performance obtained when including the three catchments with significant gully erosion. Moreover, there is no significant difference (alpha 5 per cent) between the performances of the two model versions. Cultivated lands were found to be on average five times more prone to erosion than bush–shrub lands. The predicted soil loss values in most parts of Gindae catchment are generally high as compared with the soil formation rates. This emphasises the importance of implementing appropriate soil and water conservation measures in critical sediment source areas prioritising the steepest part of the catchment (i.e. areas with slope >50 per cent). The applicability of the WATEM/SEDEM model to environments where gully erosion is important requires the incorporation of permanent gully and bank gully erosion in the model structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Estimating watershed erosion using geographic information systems coupled with the universal soil loss equation (USLE) or agricultural non-point source pollution model (AGNPS) has become a recent trend. However, errors in over-estimation often occur due to the misapplication of parameters in the equation and/or model. Because of poor slope length calculation definitions for entire watersheds, the slope length factor is the parameter most commonly misused in watershed soil loss estimation. This paper develops a WinGrid system that can be used to calculate the slope length factor from each cell for reasonable watershed soil loss and sediment yield estimation.  相似文献   

16.
Although much of the recent attention on the environmental problems has focused on climatic change, there is also increasing concern that accelerated soil erosion and associated land degradation represent a major problem for sustainable development and environmental protection. There is an urgent need to obtain reliable quantitative data on the extent and rates of soil erosion worldwide to provide a more comprehensive assessment of the magnitude of the problems and to underpin the selection of effective soil conservation measures. The use of environmental radionuclides, in particular 137Cs, affords an effective and valuable means for studying erosion and deposition within the landscape. The key advantage of this approach is that it can provide retrospective information on medium-term (30–40 years) erosion/deposition rates and spatial patterns of soil redistribution, without the need for long-term monitoring programmes. Advantages and limitations of the technique are highlighted. The launching of two closely linked International Atomic Energy Agency (IAEA) research networked projects in 1996 involving some 25 research groups worldwide has made a major contribution to co-ordinating efforts to refine and to standardise the 137Cs technique. The efficacy and value of the approach has been demonstrated by investigations in a number of environments. Significant developments that have been made to exploit its application in a wide range of studies are reported in this review paper. Other environmental radionuclides, such as unsupported 210Pb and 7Be offer considerable potential for use in soil erosion investigations, both individually and complementary to 137Cs. The IAEA through research networks and other mechanisms is promoting further development and applications of these radionuclides in soil erosion and sedimentation studies for a sustainable resource use and environmental protection.  相似文献   

17.
The spatial variation of soil erosion and deposition rates was studied in a small catchment cultivated by rainfed agriculture, in the Mouriki area, Viotia Greece, using the 137Cs technique. A 25 m grid was established parallel to the slope and the 137Cs inventories were defined for the grid points. After establishing the local reference inventory, the soil erosion and deposition rates were estimated using the 137Cs residuals for individual points on the grid in conjunction with the four conversion (calibration) models described by Walling and He (2001) [Models for converting 137Cs measurements to estimates of soils redistribution rates on cultivated and uncultivated soils]. The conversion models were validated by means of sensitivity analysis and using local experimental data. The resulting estimates of soil redistribution rates were interpolated by means of kriging, using Surfer Golden software. The magnitude of the soil erosion rates depend on many factors, including the location of the sampling point, the local slope, and the soil properties. The mass balance model 2 (MBM2) and mass balance model incorporating soil movement by tillage (MBM3) conversion models predict soil redistribution rates of the same order of magnitude as the experimental data and are able to take account of Chernobyl fallout. Predicted soil erosion rates for catchment grid varied from 6.71 to 85.55 t ha−1 per year using MBM2 and from 3.54 to 95.78 t ha−1 per year using MBM3. Deposition rates varied from 1.23 to 168.19 t ha−1 per year using MBM2 and from 3.24 to 189.18 t ha−1 per year using MBM3. High correlation was apparent between erosion/deposition rates (MBM2) and soil P (P<0.001), soil K (P<0.001), soil organic matter % (P<0.05), point slope (P<0.05), clay % (P=0.053) and altitude (P=0.057). The total soil losses from the catchment have been estimated at 18.34 t ha−1 per year using MBM2 and 22.12 t ha−1 per year using MBM3.  相似文献   

18.
A Holocene sediment budget was constructed for the 758 km2 Dijle catchment in the Belgian loess belt, in order to understand long-term sediment dynamics. Hillslope sediment redistribution was calculated using soil profile information from 809 soil augerings, which was extrapolated to the entire catchment using morphometric classes. As large parts of the forests within the catchment prove to have undergone little or no erosion since medieval times, a correction was applied for the presence of forests. Total Holocene erosion amounts 817 ± 66 Mt for the catchment, of which 327 ± 34 Mt was deposited as colluvium. This corresponds with a net Holocene soil erosion rate of 10.8 ± 0.8 × 103 Mg ha− 1 for the entire Dijle catchment. Alluvial deposits were studied through 187 augerings spread over 17 cross-valley transects. The total alluvial sediment deposition equals 352 ± 11 Mt or 42% of total eroded sediment mass. Results indicate that at the scale of a medium-sized catchment the colluvial sediment sink is as important as the alluvial sediment sink and should not be neglected. As a result the estimation of erosion through alluvial storage and sediment export would yield large errors. Dating of sediment units show an important increase in alluvial deposition from medieval times onwards, indicating the important influence of agricultural activities that developed from that period. Mean sediment export rates from the catchment for the last 1000–1200 years range between 0.8 and 1.3 Mg ha− 1 a− 1 and are consistent with present suspended sediment measurements in the Dijle. Erosion for agricultural land for this period is 9.2 ± 2.2 Mg ha− 1 a− 1. Sediment budgets for the various tributary catchments provide an insight in the sources and sinks of sediment at different scales within the catchment.  相似文献   

19.
Abstract. Soil erosion and sediment delivery cause many environmental problems posing a substantial financial burden upon society. Policy makers therefore look for a strategy to minimize their impact. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, requires an integrated approach to catchment management. To evaluate such management, a spatially distributed soil erosion and sediment delivery model is necessary. Such a model (WaTEM/SEDEM) was applied to three agricultural catchments in Flanders (Belgium). The model was first used to identify where the measures to control soil loss should be taken. Secondly, a scenario analysis was used to select the most effective set of techniques. The findings showed that soil conservation measures taken in fields are not only effective in reducing on-site soil loss, but also in drastically reducing sediment yield. Off-site sediment control measures appear to be much less effective in reducing sediment yield than previously thought. The results also suggest that data from field experiments cannot be extrapolated to a catchment scale.  相似文献   

20.
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 137Cs technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号