首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion containing anionic lecithin-coated droplets was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (5 wt % corn oil, 1 wt % lecithin, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic lecithin-chitosan-coated droplets was formed by diluting the primary emulsion with an aqueous chitosan solution (1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0.036 wt % chitosan). The stabilities of the primary and secondary emulsions with the same oil concentration to thermal processing, freeze-thaw cycling, high calcium chloride concentrations, and lipid oxidation were determined. The results showed that the secondary emulsions had better stability to droplet aggregation during thermal processing (30-90 degrees C for 30 min), freeze-thaw cycling (-10 degrees C for 22 h/30 degrees C for 2 h), and high calcium chloride contents (相似文献   

2.
The ability of enzymatically synthesized structured phosphatidylcholine (PC) containing caprylic acid to form and stabilize oil-in-water emulsions prepared with different triglycerides [medium chain triglycerides (MCT), soybean oil, and enzymatically synthesized structured lipids] was examined and compared with natural soybean PC and deoiled lecithin. Emulsions were prepared with varying oil and emulsifier concentrations. The particle size distribution, creaming stability, and viscosity were measured for the evaluation of the emulsifying properties. With an increase in the oil concentration, there was an increase in particle size, viscosity, and creaming layer. With an increase in the phospholipid (PL) concentration, there was usually a decrease in particle size and an increase in viscosity, where the emulsion stability was increased. General emulsions prepared with structured lipids resulted in smaller particle sizes as compared to MCT and soybean oil. Deoiled lecithin was able to increase the viscosity more significantly and give smaller particle sizes as compared to the other emulsifiers, thus producing more stable emulsions. However, in certain cases, structured PC was superior to deoiled lecithin and soybean PC. This observation was made for emulsions prepared with soybean oil or structured lipid at an oil/water ratio of 10:90. At an oil/water ratio of 30:70, the deoiled lecithin performed better as compared to the other PLs with all oil types. However, structured PC produced more stable emulsions as compared to natural soybean PC in MCT and soybean oil.  相似文献   

3.
The purpose of this research was to examine the influence of the physical state of lipids on iron-promoted oxidation of methyl linolenate in octadecane oil-in-water emulsions. Octadecane and methyl linolenate oil-in-water emulsions were prepared that contained droplets having the octadecane as either liquid or solid. The physical state of the octadecane was confirmed by a differential scanning calorimeter (DSC). The effect of the physical state of the lipid on oxidation rates was determined as a function of iron concentration (80 and 160 microM), pH (3.0 or 7.0), emulsifier type, and cooling rate. Oxidation of methyl linolenate was determined by lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Emulsions containing solid octadecane had higher rates of lipid hydroperoxide and TBARS formation than those containing liquid octadecane. The rate at which the emulsions were cooled had no influence on oxidation rates. Oxidation rates in both emulsions increased with increasing iron concentration and decreasing pH. Oxidation rates were lowest in emulsions with cationic droplet membranes (dodecyl trimethylammonium bromide-stabilized), presumably due to the repulsion of iron from the oxidizable methyl linolenate in the emulsion droplet core. These results suggest that upon crystallization of octadecane, the liquid methyl linolenate migrated to the emulsion droplet surface, where it was more prone to oxidation because it was in closer contact with the iron ions in the aqueous phase.  相似文献   

4.
The effects of the purple-fleshed sweet potato extract (PFSPE) on oxidation stabilities of a model oil-in-water emulsion prepared with enzymatically synthesized fish oil-soybean oil structured lipid (SL) versus physically blended lipid (PBL) without modification were evaluated. The anthocyanins in PFSPE were analyzed and identified by HPLC-MS. The fatty acid composition of SL was similar to that of PBL, except palmitic acid (1.48 in PBL and 9.61% in SL) and linoleic acid (62.47 in PBL and 49.58% in SL). Peonidin 3-caffeoylsophoroside-5-glucoside, peonidin-3-(6',6'-caffeoylferuloylsophoroside)-5-glucoside, peonidin-dicaffeoylsophoroside-5-glucoside, peonidin 3-(6',6"-caffeoyl-p-hydroxybenzoylsophoroside)-5-glucoside were identified as the major anthocyanin compounds in PFSPE. Different levels (200, 500, 1000 ppm) of PFSPE were added into both SL- and PBL-based emulsions, with 200 ppm catechin as comparison. Oxidation was monitored by measuring the peroxide value and thiobarbituric acid reactive substances. The antioxidant activity of PFSPE increased with an increased concentration, the concentration of 1000 ppm showed high antioxidant ability similar to that of catechin in both PBL- and SL-based oil-in-water emulsions. It is notable that the SL-based emulsion appeared to have better oxidative stability than the PBL-based emulsion.  相似文献   

5.
The purpose of this research was to better understand the mechanisms by which proteins affect the rates of lipid oxidation in order to develop protein-stabilized emulsion delivery systems with maximal oxidative stability. This study evaluated the affect of pH and emulsifier concentration on the stability of cumene hydroperoxide in hexadecane-in-water emulsions stabilized by beta-lactoglobulin (beta-Lg). Emulsions prepared with 0.2 wt % beta-Lg (at pH 7.0) showed a 26.9% decrease in hydroperoxide concentrations 5 min after 0.25 mM ferrous ion was added to the emulsion. EDTA, but not continuous phase beta-Lg, could inhibit iron-promoted lipid hydroperoxide decomposition. Lipid hydroperoxides were more stable to iron-promoted degradation at pH values below the pI of beta-Lg, where the emulsion droplet would be cationic and thus able to repel iron away from the lipid hydroperoxides. Heating the beta-Lg-stabilized emulsions to produce a cohesive protein layer on the emulsion droplet surface did not alter the ability of iron to decompose lipid hydroperoxides. These results suggest that proteins at the interface of emulsion droplets primarily stabilize lipid hydroperoxides by electrostatically inhibiting iron-hydroperoxide interactions.  相似文献   

6.
The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.  相似文献   

7.
The objective of this study was to investigate the influence of globular protein interfacial cross-linking on the in vitro digestibility of emulsified lipids by pancreatic lipase. 3% (wt/wt) corn oil-in-water emulsions stabilized by either lecithin or beta-lactoglobulin were prepared (pH 7). A portion of the beta-lactoglobulin stabilized emulsions was subjected to a heat treatment known to cross-link the adsorbed globular proteins (85 degrees C, 20 min). Pancreatic lipase and bile extract were then added to each emulsion at 37 degrees C (pH 7) and the evolution of the particle charge, particle size, appearance and free fatty acids released were measured over a period of 2 h. The rate and extent of lipid digestion did not differ greatly between lecithin and beta-lactoglobulin stabilized emulsions, nor did it differ greatly for unheated (BLG-U) or heated (BLG-H) beta-lactoglobulin stabilized emulsions. For example, the initial rate of lipid digestion was found to be 3.1, 3.4, and 2.3 mM fatty acids s(-1) m(-2) of lipid surface for droplets stabilized by BLG-U, BLG-H, and lecithin, respectively. Pancreatic lipase was able to adsorb to the droplet surfaces and access the emulsified lipids, regardless of the initial interfacial composition and the fact that some of the original emulsifier appeared to remain at the oil-water interface during digestion. These results help to explain why the human body is so efficient at digesting dietary triacylglycerols.  相似文献   

8.
Metal-catalyzed oxidation of a structured lipid model emulsion   总被引:5,自引:0,他引:5  
The effects of temperature, time, metal, citric acid, and tocopherol contents on the oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated by response surface methodology. The emulsions were stabilized by whey protein isolate. Oxidation was monitored by measuring lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Cupric sulfate and ferrous sulfate were used to study the effect of metal concentration and type. A statistical model was developed to determine the relationships between all variables considered. The relationships differed depending on the type of metal catalyst used. For both metal types, the metal concentration had the highest positive effect on peroxide value. Citric acid had the highest negative effect on peroxide value for iron-containing emulsions, while tocopherol had the highest negative effects for copper-containing emulsions. Results from the TBARS test did not vary significantly enough to yield an acceptable model.  相似文献   

9.
Omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Engineering the interfacial membrane of oil-in-water emulsion droplets to produce a cationic and/or thick interface is an effective method to control lipid oxidation. Cationic and thick emulsion droplet interfacial membranes can be produced by an electrostatic layer-by-layer deposition technique resulting in droplets that are coated by multiple layers of emulsifiers. Tuna oil-in-water emulsion droplets coated by lecithin and chitosan produce cationic emulsion droplets that are more oxidatively stable than emulsions coated by lecithin alone. Ethylenediaminetetraacetic acid (EDTA) was able to increase the oxidative stability of emulsions stabilized with lecithin and chitosan more effectively than mixed tocopherols. The combination of EDTA and mixed tocopherols was not more effective than EDTA alone suggesting that control of prooxidant metals was the most important antioxidant technology. The production of emulsion droplets coated with lecithin and chitosan could be an excellent technology for stabilization of oxidatively unstable lipids for use in a variety of food products.  相似文献   

10.
omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Spray-drying tuna oil-in-water emulsion droplets with a coating of lecithin and chitosan multilayer system could produce emulsion droplet interfacial membranes that are cationic and thick, both factors that can help control lipid oxidation. Physicochemical and oxidative stability of the spray-dried emulsions were determined as a function of storage temperature and relative humidity (RH). The combination of ethylenediaminetetraacetic acid (EDTA) and mixed tocopherols was able to increase the oxidative stability of dried emulsions. Lipid oxidation was more rapid during storage at low relative humidity (11% and 33% compared to 52% RH). At high moisture, physical modifications in the sample were observed, including reduced dispersibility and formation of brown pigments. Sugar crystallization or Maillard products produced at the higher humidities may have inhibited oxidation. Overall, spray-dried tuna oil-in-water emulsions stabilized by lecithin-chitosan membranes were more oxidatively stable than bulk oils and thus have excellent potential as an omega-3 fatty acid ingredient for functional foods.  相似文献   

11.
The behavior of antioxidants in emulsions is influenced by several factors such as pH and emulsifier type. This study aimed to evaluate the interaction between selected food emulsifiers, phenolic compounds, iron, and pH and their effect on the oxidative stability of n-3 polyunsaturated lipids in a 10% oil-in-water emulsion. The emulsifiers tested were Tween 80 and Citrem, and the phenolic compounds were naringenin, rutin, caffeic acid, and coumaric acid. Lipid oxidation was evaluated at all levels, that is, formation of radicals (ESR), hydroperoxides (PV), and secondary volatile oxidation products. When iron was present, the pH was crucial for the formation of lipid oxidation products. At pH 3 some phenolic compounds, especially caffeic acid, reduced Fe(3+) to Fe(2+), and Fe(2+) increased lipid oxidation at this pH compared to pH 6. Among the evaluated phenols, caffeic acid had the most significant effects, as caffeic acid was found to be prooxidative irrespective of pH, emulsifier type, and presence of iron, although the degrees of lipid oxidation were different at the different experimental conditions. The other evaluated phenols were prooxidative at pH 3 in Citrem-stabilized emulsions and had no significant effect at pH 6 in Citrem- or Tween-stabilized emulsions on the basis of the formation of volatiles. The results indicated that phenol-iron complexes/nanoparticles were formed at pH 6.  相似文献   

12.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. To evaluate how surfactant headgroup size influences lipid oxidation rates, emulsions were prepared with polyoxyethylene 10 stearyl ether (Brij 76) or polyoxyethylene 100 stearyl ether (Brij 700), which are structurally identical except for their hydrophilic headgroups, with Brij 700 containing 10 times more polyoxyethylene groups than Brij 76. Fe(2+)-promoted decomposition of cumene hydroperoxide was lower in Brij 700-stabilized than in Brij 76-stabilized hexadecane emulsions. Fe(2+)-promoted alpha-tocopherol oxidation rates were similar in hexadecane emulsion regardless of surfactant type. Brij 700 decreased production of hexanal from methyl linoleate and the formation of lipid peroxides and propanal from salmon oil compared to emulsions stabilized by Brij 76. These results indicate that emulsion droplet interfacial thickness could be an important determinant in the oxidative stability of food emulsions.  相似文献   

13.
To obtain a better understanding of how the interfacial region of emulsion droplets influences lipid oxidation, the oxidative stability of salmon oil-in-water emulsions stabilized by whey protein isolate (WPI), sweet whey (SW), beta-lactoglobulin (beta-Lg), or alpha-lactalbumin (alpha-La) was evaluated. Studies on the influence of pH on lipid oxidation in WPI-stabilized emulsions showed that formation of lipid hydroperoxides and headspace propanal was much lower at pH values below the protein's isoelectric point (pI), at which the emulsion droplets were positively charged, compared to that at pH values above the pI, at which the emulsion droplets were negatively charged. This effect was likely due to the ability of positively charged emulsion droplets to repel cationic iron. In a comparison of lipid oxidation rates of WPI-, SW-, beta-Lg-, and alpha-La-stabilized emulsions at pH 3, the oxidative stability was in the order of beta-Lg > or = SW > alpha-La > or = WPI. The result indicated that it was possible to engineer emulsions with greater oxidative stability by using proteins as emulsifier, thereby reducing or eliminating the need for exogenous food antioxidants.  相似文献   

14.
Emulsion can be produced with electrostatic layer-by-layer deposition technologies to have cationic, thick multilayer interfacial membranes that are effective at inhibiting the oxidation of omega-3 fatty acids. This study investigated the stability of spray-dried multilayer emulsion upon reconstitution into an aqueous system. The primary (lecithin) and multilayered secondary emulsions (lecithin and chitosan) were spray-dried with corn syrup solids (1-20 wt %). The lecithin-chitosan multilayer interfacial membrane remained intact on the emulsion droplets upon reconstitution into an aqueous system. Reconstituted secondary (lecithin-chitosan) emulsions were more oxidatively stable than reconstituted primary (lecithin) emulsions. A minimum of 5 wt % corn syrup solids was needed to microencapsulate the secondary emulsion droplets. Maximum oxidative stability of both the powder and the reconstituted secondary emulsions was observed in samples with 5% and 20% corn syrup solids. Addition of EDTA (25 microM) inhibited oxidation of reconstituted primary and secondary emulsions. These studies suggest that a microencapsulated multilayered emulsion system could be used as a delivery system for omega-3 fatty acids in functional foods.  相似文献   

15.
Temporal release and retention of aroma compounds from structured emulsions (where unsaturated monoglycerides are added to the oil) and conventional oil-in-water emulsions were studied using in vitro dynamic headspace analysis by proton-transfer reaction mass spectrometry and static headspace analysis by gas chromatography-mass spectrometry. Under dynamic conditions, the structured emulsion exhibited delayed release compared to the oil-in-water emulsion containing the same lipid content of 5%. The time to maximum concentration T max of amphiphilic and lipophilic aroma compounds increased by a factor of 1.2 (for 3 E-hexenal) to 1.9 (for octanal). The aroma release profile of the 5% lipid structured emulsion was close to that obtained for the oil-in-water emulsion containing 10% lipid. Under static conditions, the 5% lipid structured emulsion retained more of the most lipophilic aroma compounds than its counterpart 5% oil-in-water nonstructured emulsion. The present study provides potential solutions for modulating aroma release profiles of reduced-fat foods by self-assembly structures.  相似文献   

16.
Beef heifers (n = 48) were offered, daily, a 1.5 kg ration that contained 0, 69, 138, and 275 g of ruminally protected fish oil (RPFO) fortified with vitamin E (5000 IU/kg). The fatty acid profile of neutral (NL) and polar lipids (PL) of neck muscle was analyzed by GC-FID. Minced muscle was displayed in an 80% O(2):20% CO(2) atmosphere under simulated retail display conditions. Muscle α-tocopherol concentrations did not differ. For PL, the proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased (P < 0.05, linearly and quadratically, respectively). For NL, the proportion of EPA was not affected but DHA increased linearly and quadratically (P < 0.05). Supplementation did not affect color stability of ground beef, but lipid oxidation was higher (P < 0.001) for 275 g of RPFO on day 10 of display. In conclusion, supplementation with RPFO increased muscle EPA and DHA with no effect on color stability while lipid oxidation was increased only at the highest level of supplementation, after prolonged display.  相似文献   

17.
Oil-in-water emulsions containing cationic droplets stabilized by lecithin-chitosan membranes were produced using a two-stage process. A primary emulsion was prepared by homogenizing 5 wt % corn oil with 95 wt % aqueous solution (1 wt % lecithin, 100 mM acetic acid, pH 3.0) using a high-pressure valve homogenizer. This emulsion was diluted with aqueous chitosan solutions to form secondary emulsions with varying compositions: 1 wt % corn oil, 0.2 wt % lecithin, 100 mM acetic acid, and 0-0.04 wt % chitosan (pH 3.0). The particle size distribution, particle charge, and creaming stability of the primary and secondary emulsions were measured. The electrical charge on the droplets increased from -49 to +54 mV as the chitosan concentration was increased from 0 to 0.04 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically and the emulsions became unstable to creaming when the chitosan concentration exceeded 0.008 wt %, which was attributed to charge neutralization and bridging flocculation effects. Sonication, blending, or homogenization could be used to disrupt flocs formed in secondary emulsions containing droplets with high positive charges, leading to the production of emulsions with relatively small particle diameters (approximately 1 microm). These emulsions had good stability to droplet aggregation at low pH (< or =5) and ionic strengths (<500 mM). The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to environmental stresses.  相似文献   

18.
The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.  相似文献   

19.
Oil-in-water (O/W) emulsions containing small oil droplets (d32 approximately 0.22 microm) stabilized by sodium dodecyl sulfate (SDS)-fish gelatin (FG) membranes were produced by an electrostatic deposition technique. A primary emulsion containing anionic SDS-coated droplets (zeta approximately -40 mV) was prepared by homogenizing oil and emulsifier solution using a high-pressure valve homogenizer (20 wt % corn oil, 0.46 wt % SDS, 100 mM acetic acid, pH 3.0). A secondary emulsion containing cationic SDS-FG-coated droplets (zeta approximately +30 mV) was formed by diluting the primary emulsion with an aqueous fish gelatin solution (10 wt % corn oil, 0.23 wt % SDS, 100 mM acetic acid, 2.00 wt % fish gelatin, pH 3.0). The stabilities of primary and secondary emulsions with the same oil concentration to thermal processing, ionic strength, and pH were assessed by measuring particle size distribution, zeta potential, microstructure, destabilized oil, and creaming stability. The droplets in secondary emulsions had good stability to droplet aggregation at holding temperatures from 30 to 90 degrees C for 30 min, [NaCl] < or = 100 mM, and pH values from 3 to 8. This study shows that the ability to generate emulsions containing droplets stabilized by multilayer interfacial membranes comprised of two or more types of emulsifiers, rather than a single interfacial layer comprised of one type of emulsifier, may lead to the development of food products with improved stability to environmental stresses.  相似文献   

20.
Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号