首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was performed to investigate the effect of cobalt (Co) and copper (Cu) nutrition on nodulation, nodule activity and growth of Lablab purpureus plants growing in sandy clay loam soil collected from Toshka region in south of Egypt. The pots were given nutrient solution only once with addition of increasing levels of cobalt and copper (50, 100, 150 and 200 μg) as cobalt or copper sulfate solution. The present study has provided a new insight into the effect of cobalt and copper on nodulation and nodule physiology of Lablab purpureus (L.) Sweet (kashrangeeg) that has not yet been examined. Thus, the present work suggest that Co and Cu application is essential for the enhancement of nodulation, nodule activity and growth of Lablab purpureus plants growing in sandy clay loam soil deficient for theses microelements.  相似文献   

2.
Soybean plant is characterized by a systemic autoregulatory control system of nodulation (autoregulation) by initial infection with rhizobia, and plants commonly display a systemic acquired resistance (SAR) to pathogenic microbe infection related to salicylic acid (SA) signal transmission. We investigated the effect of exogenous SA supply on soybean nodulation to determine whether SA affects the autoregulation of nodulation. Seedlings of the hypernodulating mutants NOD1-3, NOD2-4 and their parent cv. Williams were treated or not treated (control) with a 100 μmS-SA solution at 5 d before the inoculation of Bradyrhizobium japonicum strain USDA110. The nodule dry weight and the number of nodules of the wild type soybean Williams exhibiting autoregulation drastically decreased by the addition of 100 μm SA. The decrease in the nodule number was not caused by the reduction of the rhizobium number in the medium. Salicylic acid inhibited only early nodule formation and did not affect the growth of formed nodules. The inhibitory effect of SA on the nodulation of NOD1-3 and NOD2-4 was significantly less pronounced than that in Williams. These results indicate that SA is directly involved in signal transmission in the autoregulation, and that SA or the SAR induced by SA stimulates the autoregulation of nodulation in soybean.  相似文献   

3.
Three plant growth-promoting rhizobacteria strains containing ACC-deaminase (Pseudomonas jessenii, Pseudomonas fragi, and Serratia fonticola) and Rhizobium leguminosarum were selected and characterized by conducting some experiments under axenic condition. The selected isolates had the potential to improve the growth of lentil seedlings under axenic conditions. Pot and field experiments were conducted to evaluate the potential of these selected strains for improving growth and yield of lentil under natural conditions. A classical triple response (reduction of stem elongation, swelling of hypocotyle, and change in the direction of growth) bioassay was also conducted to evaluate the effect of high ethylene concentration on the growth of etiolated lentil seedlings, and the performance of coinoculation was evaluated to reduce the classical triple response in comparison with cobalt (Co2+), a chemical inhibitor of ethylene. Results showed that coinoculation of Pseudomonas and Serratia sp. with R. leguminosarum significantly increased the growth and yield of lentil. However, synergistic/coinoculation effect of P. jessenii with R. leguminosarum was more pronounced compared to that with P. fragi and S. fonticola. It increased the number of pods per plant, number of nodules per plant, dry nodule weight, grain yield, and straw yield up to 76%, 196%, 109%, 150%, and 164% under pot and up to 98%, 98%, 100%, 82%, and 78%, respectively, under field conditions as compared to uninoculated control. Similarly, combined inoculation significantly increased N concentration of grains under both pot and field conditions. The results from classical triple response assay showed that the effects of classical triple response decreased due to coinoculation in etiolated lentil seedlings and due to a decrease in the ethylene concentration. It is suggested that the strategy adopted by Pseudomonas sp. containing ACC-deaminase with Rhizobium to promote nodulation and yield by adjusting ethylene levels could be exploited as an effective tool for improving growth, nodulation, and yield of lentil.  相似文献   

4.
Soybean plants (Glycine max L. cv Santa Rosa) grown hydroponically in nutrient solutions had reduced nodule mass and numbers in the presence of aluminum (Al). Reduced nodule number was attributed mainly to hydrogen (H) ion toxicity, whereas Al had a stronger effect on nodule growth. Using a vertical split‐root system with Al exclusively in the lower (hydroponic) layer also resulted in a significant reduction of nodulation and nodule growth in the surface compartment (vermiculite). This indirect effect could be attributed mainly to Al rather than H. Subsurface Al had no apparent effect on shoot growth or root growth of the upper compartment, but significantly limited root growth in the lower compartment where it was applied. The indirect effect of Al on nodulation could be a reflection of the abnormal root growth in the lower compartment. Split‐root experiments with a high Al soil, however, produced different effects. High Al in soil used exclusively in the lower compartment did not reduce nodule numbers or mass in the upper compartment despite being more harmful than the Al solutions to nodulation and growth of plants when used in a single compartment. Growth of roots in the subsurface compartment was also much less affected by the high soil Al compared with the Al‐containing nutrient solutions. Nodule activity, as estimated by xylem sap ureide levels, was only reduced after direct exposure of nodules to Al. A pronounced increase in the ratio of asparagine/glutamine occurred in all Al treatments where nodulation was reduced, and in some cases, there was an increase in total amino acid concentration of the xylem sap.  相似文献   

5.
We study the effect of plant growth–promoting rhizobacteria (PGPR) along with Mesorhizobium sp. BHURC02 on nodulation, plant growth, yield, and nutrient content of chickpea (Cicer arietinum L.) under field conditions. A similar study has been conducted for nodulation and plant growth of chickpea in pot experiment under glasshouse conditions. The treatment combination of Mesorhizobium sp. BHURC02 and Pseudomonas fluorescens BHUPSB06 statistically significantly increased nodule number plant–1, dry weight of nodule plant–1, and root and shoot dry weights plant–1 over the control under a glasshouse experiment. The maximum significant increase in nodule number, dry matter, and nutrient content were recorded in co-inoculation of Mesorhizobium sp. BHURC02 and P. fluorescens BHUPSB06 followed by co-inoculation of Mesorhizobium sp., Azotobacter chroococcum, and Bacillus megatrium BHUPSB14 over uninoculated control in a 2-year field study. Hence, co-inoculation of Mesorhizobium sp. and P. fluorescens may be effective indigenous PGPR for chickpea production.  相似文献   

6.

Red clover (Trifolium pratense L.) is one of the most important plants in forage production, especially in northern areas. Fertilisation practices are focused on high yield and forage quality but effects of nutrients on nodulation and N2 fixation are poorly understood. The aim of this work was to study how nitrogen (N) and phosphorus (P) separately as well as in combination affected nodulation. Red clover plants were grown in pots with gravel in a greenhouse for 11 weeks. To resemble field conditions the root temperature was kept lower than the shoot temperature. Plants were given five different combinations of N and P concentrations during growth. The result showed that at high N concentrations P had a counteracting effect on the N inhibition. The N2-fixation parameters, nodule number, nodule dry matter and specific nitrogenase activity, were six times higher in plants grown with high N and high P than in plants with high N and low P. When the N2-fixation parameters and the dry matter of roots and shoots were related to total plant dry matter, there was a stronger effect of P on nodulation parameters than on roots and shoots. This indicates that P has a direct effect on the N2-fixation parameters, rather than an indirect effect via increased plant growth. These results demonstrate the importance to studying the effects of more than one nutrient at a time.  相似文献   

7.
The effect of increasing amounts of nitrogen (nitrate or urea) on the nitrogen fixing capacity (acetylene reduction assay = ARA), growth (fresh and dry weight) and the number of stem- and root-nodules of the tropical legume Aeschynomene afraspera was studied in hydroponic cultures (in growth cabinet) as well as in pot experiments (field conditions). The experiments were carried out at Dakar in the rainy season of 1985. Plants were grown in the presence of 6 nitrate concentrations (0,3,6,9,12 and 15 mM N/l) in hydroponic solution and with 4 urea concentrations (0,50,100 and 200 kg N/ha) in pots. In both types of experiments, root nodulation and ARA were strongly inhibited by increasing amounts of mineral nitrogen. Stem nodulation and potential nitrogen fixation of stems, however, remained unaffected. Lower amounts of mineral nitrogen even enhanced growth as well as nitrogen fixation. The possible future of this remarkable plant as green manure or fodder in low input countries of the tropics is discussed.  相似文献   

8.
Summary The influence of three inoculum rates on the performance of three chickpea (Cicer arietinum L.) Rhizobium strains was examined in the field on a Mollisol soil. Increasing amounts of inoculum improved the performance of the strains. A normal dose (104 cells per seed) applied at different intervals gave non-significant increases in nodulation, nitrogenase activity (acetylene reduction assay), nitrogen uptake and grain yield. A ten-fold increase in inoculum increased nodule number, shoot dry weight, nitrogenase activity (ARA) and grain yield, but increases over the control were significant only for nodule dry weight and nitrogen uptake by shoot and grain. The highest level of inoculum (100 × normal) significantly increased nodule dry weight, grain yield, total nitrogenase activity (ARA) and nitrogen uptake by shoot and grain. Strain TAL 620 was more effective than the other two. Combined nitrogen (60 kg N ha–1) suppressed nodulation and nitrogenase activity (ARA).Research paper No. 4345 from the Experiment Station, G. B. P. U. A. & T., Pantnagar, Nainital, U. P.  相似文献   

9.
Lentil is cultivated in Chilean Mediterranean drylands, in areas with soils that are nutrient depleted and eroded. Inoculation of lentil with rhizobia in co-inoculation with growth promoting rhizobacteria would allow higher biomass and an opportunity for early nodulation and increased nitrogen fixation. The objective of this research was to select rhizosferic bacteria (PGPR) from lentils and to evaluate their effect on lentil nodulation in co-inoculation with rhizobia. Sixty three lentil rhizobacteria isolates where obtained from nine soils in the mediterranean area. These were fingerprinted through BOX-PCR reducing the number to 57 distinct strains. The strains were evaluated for ACCdeaminase activity, IAA production and compatibility with rhizobia. Seventeen strains showed ACC-deaminase activity, all of them synthesized IAA and 38 were compatible with the rhizobia. Ten selected strains were identified as Pseudomonas spp. through 16S rRNA sequencing. The strains were inoculated in lentil seedlings growing on seed germination pouches, to evaluate nodule formation. The strain LY50a increased early nodulation in 85% in comparison to the control inoculated with rhizobia (AG-84) only. In conclusion, bacteria from the rhizosphere from Mediterranean soils of Chile can be used as nodulation promoters in lentils.  相似文献   

10.
Legumes establish symbiosis with nitrogen-fixing rhizobia through root nodules to acquire nitrogen. Legumes control nodule number through systemic (autoregulation of nodulation) as well as local regulation. Moreover, plants defend themselves against bacteria and other pathogens through the induction of localized (localized acquired resistance) and systemic (SAR, systemic acquired resistance; ISR, induced systemic resistance) responses. Herein, we show that the number of root nodules is suppressed by programmed cell death (PCD), and is simultaneously controlled by SAR and ISR in soybean (Glycine max [L.] Merr.). The wild-type soybean cultivar Williams 82 showed markedly fewer root nodule primordia and PCD symptoms, including accelerated DNA degradation, enhanced generation of reactive oxygen species (visualized by 3,3′-diaminobenzidine staining), and excessive cell death (detected on staining with trypan blue) compared to the hypernodulation mutant NOD1-3. These results suggest that PCD suppresses the formation of root nodules in wild-type soybean. In addition, microarray and gene ontology analyses showed that essential components of hypersensitive response (HR) or disease resistance, such as resistance (R) genes, mitogen-activated protein kinase cascade, SAR, salicylic acid, jasmonic acid, ethylene, etc., were activated in wild-type plants. These analyses corroborate the above findings, demonstrating that the suppression of root nodule formation by PCD is accompanied by HR, and is simultaneously controlled by SAR and ISR in soybean. These findings provide new insight into the control of nodulation to balance nutritional requirements and energy status in legumes.  相似文献   

11.
To ascertain the reasons for poor nodulation of pigeonpea, we studied the effect of high temperature on the production of flavonoids by the pigeonpea host. A high temperature affected flavonoid production by pigeonpea and mungbean. At 37°C pigeonpea root exudates contained four flavonoids and the root extract contained five. The proportion of the second flavonoid in the pigeonpea and the mungbean was higher and the proportion of the third flavonoid was lower at 37°C compared to 30°C. At the higher temperature the flavonoids exuded from pigeonpea roots were same those in the root homogenate.  相似文献   

12.
东北黑土区大豆生长、结瘤及产量对氮、磷的响应   总被引:6,自引:0,他引:6  
氮肥和磷肥显著影响大豆的结瘤和产量。然而在土壤肥力较高、速效养分有效性差的东北地区,有关氮肥和磷肥施用量对大豆结瘤和产量影响的研究较少。本试验采用裂区田间试验,设置3个氮(N)水平(0、20 和 50 kg/hm2)和 3 个磷(P)水平(0、 20 和 40 kg/hm2),研究氮、 磷及其交互作用对大豆生长发育、 结瘤特征及产量的影响。结果表明, 单施氮肥大豆生物量和产量随着施氮量的增加而增加,而根瘤数量、 干重、 大小和结瘤指数呈逐渐下降的趋势。单施磷肥促进大豆生物量、 产量、 根瘤数量、 干重、 大小和结瘤指数的增加,但其增幅低于施氮处理下的增幅。氮磷对大豆生长和产量促进作用高于单施氮和单施磷处理,但差异不显著;氮磷处理下的根瘤数量、 干重、 大小和结瘤指数低于单施磷处理;氮磷处理下N2(N 50 kg/hm2)处理下的大豆根瘤数量、 干重、 大小和结瘤指数高于N1处理(N 20 kg/hm2)下的,随着施磷量的增加大豆根瘤数量、 干重、 大小和结瘤指数增加,施磷能够抵消氮对大豆根瘤产生和形成的抑制。氮、 磷及其交互作用对大豆根瘤的影响都是直接的,并且不是通过促进大豆生长间接促进的。因此氮和磷均是限制东北地区大豆结瘤和产量的因素,但氮是主导因素。若要获得大豆高产,氮肥施用量需要控制在50 kg/hm2,磷肥在40 kg/hm2;但若想最大的发挥大豆的结瘤固氮功能,那么应该不施或者减少氮肥的施用量到20 kg/hm2,磷肥仍在40 kg/hm2。  相似文献   

13.
This study was initiated to evaluate the effect of locally isolated Rhizobium on nodulation and yield of faba bean at Haramaya, Ethiopia for three consecutive years. Ten treatments comprising of eight effective isolates of rhizobia, uninoculated, and N-fertilized (20 kg N ha?1) were laid out in a randomized complete block design with three replications. The result of the experiment indicated that all inoculation treatments increased nodule number and dry weight over the control check in all cropping seasons. The result, however, showed the non-significant effect of Rhizobium inoculation on shoot length, number of tiller per plant and 100 seed weight in all cropping season. Inoculating Haramaya University Faba Bean Rhizobium (HUFBR)-15 in 2011 and National Soil Faba Bean Rhizobium (NSFBR)-30 in 2012 and 2013 gave the highest grain yields (4330, 5267 and 4608 kg ha?1), respectively. These records were 75%, 48%, and 5% over the uninoculated treatment of respective years. Over the season, NSCBR-30 inoculation resulted in the highest nodulation and grain yield production as compared to the other treatments. In general, isolates from central Ethiopia were better than those isolated from eastern Ethiopia and Tropical Agricultural Legume (TAL)-1035 in enhancing faba bean production at Haramaya site. Therefore, NSFBR-30 is recommended as a candidate isolate for faba bean biofertilizer production in eastern Ethiopia soils.  相似文献   

14.
ABSTRACT

Co-inoculation of nitrogen-fixing bacteria with plant growth-promoting bacteria has become more popular than single inoculation of rhizobia or plant-growth-promoting bacteria because of the synergy of these bacteria in increasing soybean yield and nitrogen fixation. This study was conducted to investigate the effects of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 co-inoculation on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of the ‘Yezin-6’ soybean cultivar. Nitrogen fixation was measured using the acetylene reduction assay and ureide methods. Uptake of major nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] was also measured. This study showed that single inoculation of SAY3-7 significantly increased shoot biomass; nodulation; Relative Ureide Index (RUI %), percent nitrogen derived from N fixation (% Ndfa); N, P, K, Ca, and Mg uptakes; during the later growth stages (R3.5 and R5.5), compared with control. These observations indicate that SAY3-7 is an effective N-fixing bacterium for the plant growth, nodulation, and nitrogen fixation with an ability to compete with native bradyrhizobia. Co-inoculation of SAY3-7 and P4 significantly improved nodule number; nodule dry weight; shoot and root biomass; N fixation; N, P, K, Ca, and Mg uptake; at various growth stages and seed yield in ‘Yezin-6’ soybean cultivar compared with the control, but not the single inoculation treatments. Significant differences in plant growth, nodulation, N fixation, nutrient uptake, and yield between co-inoculation and control, not between single inoculation and control, suggest that there is a synergetic effect due to co-inoculation of SAY3-7 and P4. Therefore, we conclude that Myanmar Bradyrhizobium strain SAY3-7 and P4 will be useful as effective inoculants in biofertilizer production in the future.  相似文献   

15.
The potential effect of rhizobial inoculation on root knot nematodes in chickpea, mungbean and pigeonpea were studied under field condition. The seed treatment with respective rhizobium strains increased the nodulation, leghemoglobin content, bacteriod population, plant growth, yield and nitrogen uptake of three three food legumes compared to the plants without the rhizobium treatment. The nematode (1500?juveniles/kg soil) incited oval galls on the roots of the three legumes, and suppressed plant growth and yield. The galling, egg mass production and soil population of the nematode was greater on the plants without the rhizobium treatment. The pure culture and culture filtrate of the rhizobium strains suppressed the egg hatching and induced mortality to the juveniles of M. incognita over control. The nematode infection reduced the nodulation, bacteroid population and leghemoglobin contents of the nodules and NPK uptake by the plants. Hence, the rhizobia treatment shall be integrated to common agronomic practice of food legume cultivation so as to enhance crop productivity and to protect roots from nematode attack.  相似文献   

16.
The long-term effect of the concentration and duration of application of nitrate from the lower part of soybean roots on the nodulation and nitrogen fixation in the upper part of roots was investigated using a two-layered pot system separating the upper roots growing in a vermiculite medium and the lower roots growing in a nutrient solution. Continuous absence of nitrate (hereafter referred to as “0–0 treatment”), and continuous 1 mM (1–1 treatment) and 5 mM (5–5 treatment) nitrate treatments were imposed in the lower pot from transplanting to the beginning of the maturity stage. In addition, 5 mM nitrate was supplied partially from the beginning of the pod stage till the beginning of the maturity stage (0–5 treatment) or from transplanting till the beginning of the pod stage (5–0 treatment). The values of the total plant dry weight and seed dry weight were highest in the 5–5 treatment, intermediate in the 1–1, 5–0, 0–5 treatments, and lowest in the 0–0 treatment. The values of the nodule dry weight and nitrogen fixation activity (acetylene reduction activity) were lowest in the 5–5 treatment. The value of the nodule dry weight in the upper roots was highest in the plants subjected to the 1–1 treatment and exceeded that in the 0–0 treatment. Total nitrogen fixation activity of the upper nodules per plant at the beginning of the pod stage was also highest in the 1–1 treatment. These results indicated that long-term supply of a low level of nitrate from the lower roots could promote nodulation and nitrogen fixation in the upper part of roots. Withdrawal of 5 mM nitrate after the beginning of the pod stage (5–0 treatment) markedly enhanced nodule growth and ARA per plant in the upper roots at the beginning of the maturity stage when the values of both parameters decreased in the other treatments. The nitrate concentration in the nodules attached to the upper roots was low, including the 5–5 treatment regardless of the stages of growth. This indicated that the inhibitory effect of 5 mM nitrate or promotive effect of 1 mM nitrate supplied from the lower roots was not directly controlled by nitrate itself, but was mediated by some systemic regulation, possibly by the C or/and N requirement of the whole plant.  相似文献   

17.
Below‐ground niche complementarity in legume–cereal intercrops may improve resource use efficiency and root adaptability to environmental constraints. However, the effect of water limitation on legume rooting and nodulation patterns in intercropping is poorly understood. To advance our knowledge of mechanisms involved in water‐limitation response, faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) were grown as mono‐ and intercrops in soil‐filled plexiglass rhizoboxes under water sufficiency (80% of water‐holding capacity) and water limitation (30% of water‐holding capacity). We examined whether intercropping facilitates below‐ground niche complementarity under water limitation via interspecific root stratification coupled with modified nodulation patterns. While no significant treatment effects were measured in intercropped wheat growth parameters, water limitation induced a decrease in shoot and root biomass of monocropped wheat. Likewise, shoot biomass and height, and root length of monocropped faba bean significantly decreased under water limitation. Conversely, water limitation stimulated root biomass of intercropped faba bean in the lower soil layer (15–30 cm soil depth). Similarly, total nodule number of faba bean roots as well as nodule number in the lower soil layer increased under intercropping regardless of water availability. Under water limitation, intercropping also led to a significant increased nodule biomass (48%) in the lower soil layer as compared to monocropping. The enhanced nodulation in the lower soil layer and the associated increase in root and shoot growth provides evidence for a shift in niche occupancy when intercropped with wheat, which improves water‐limited faba bean performance.  相似文献   

18.
活性氧(reactive oxygen species,ROS)是一类具有高反应活性的氧衍生物,包括超氧阴离子(·O2)、羟自由基(·OH)、过氧羟自由基(·HO2)以及过氧化氢(H2O2)等。植物在进行有氧代谢或遭遇生物与非生物胁迫时会产生ROS,它不仅仅是有氧代谢的有毒副产物,同时能作为信号分子调节体内代谢过程,对抗外界环境。豆科植物形成根瘤时同样会产生ROS,这种ROS的变化区别于病原体入侵,而是作为一种信号物质参与结瘤过程。结瘤因子(nod factor,NF)诱导下ROS的产生参与了浸染线形成时细胞壁的重建、植物基质糖蛋白(matrix glycoprotein,MGP)的交联和肌动蛋白微丝的成核和延长过程。细胞质膜NADPH氧化酶(respiratory burst oxidase homologue,RBOHs)是共生过程中ROS产生的主要途径,Rboh基因的过表达会促进根瘤菌浸染和根瘤形成,同时根瘤中的共生微粒体数量增加,固氮效率提高,而表达受抑制后会减少ROS的产生,同时下调结瘤相关基因RIPsNINENOD2的表达,抑制固氮酶活性。此外,ROS时空上的变化与Ca2+相关联,协同调控根系结瘤。ROS的产生是植物与微生物早期的识别信号,通过认识ROS在早期结瘤过程中的作用有助于我们进一步理解共生关系建立的特异性。本文就ROS在早期结瘤过程中的产生及其发挥的作用做了综述,指出ROS通过直接或间接作用诱导结瘤基因的表达,是豆科植物根瘤形成以及功能固氮的重要信号分子。  相似文献   

19.
Greenhouse studies were conducted to evaluate the influence of nitrogen (N) sources [urea + ?N-(n-butyl) thiophosphoric triamide, NBPT (urease inhibitor) and polymer-coated urea (PCU)] and rates on soybean root characteristics, nodule formation, and biomass production on two soil types (silt loam and clay) commonly cropped to soybean in Mississippi. About 15% less belowground biomass was produced in clay soil than in silt loam soil directly corresponding to all other root parameters including root length, root area, root diameter, and nodule number. Pooled across N rates, N additions resulted in 19% and 52% decrease in belowground biomass and number of nodules, respectively, across soils compared to soybean receiving no N. The N rate was the most critical factor as it influenced all root growth parameters. Number of nodules were 24% greater with PCU than urea + NBPT. Nitrogen additions and clay soil negatively impacted soybean root growth, nodulation, and belowground biomass production.

Abbreviations: Polymer-coated urea, PCU; N-(n-butyl) thiophosphoric triamide, NBPT  相似文献   

20.
Chickpea is an important pulse crop grown mainly in the arid and semi-arid regions. The effect of water deficiency on nodulation, biomass production, and competition for nodule occupancy was evaluated in three different soils with two chickpea cultivars, Amdoun I and Chetoui. Two watering regimes were considered; a control that was irrigated three times per week and a water-deficient treatment that was irrigated only one time a week. Results showed that water deficiency significantly decreased the nodule number and the shoot dry weight for both cultivars. Root-nodule bacteria were isolated and characterized by PCR-RFLP of 16S rDNA and nifD-K intergenic spacer. The results show that water deficiency affects the diversity of nodulating rhizobia. The nodulation by Mesorhizobium mediterraneum was reduced while inefficient nodulation by Ensifer meliloti was favoured. In both treatments, chickpea was preferentially nodulated by nifD-K type N6. Analysis for NaCl tolerance showed that most of rhizobia nodulating chickpea under water deficiency are NaCl tolerant. Inoculation with the selected salt-tolerant strain of M. mediterraneum LILM10 increased significantly nodule number and grain yield in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号