首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been increasing interest in the use of summer fires to limit woody plant encroachment on grasslands, but information regarding effects of such fires on perennial grass recovery and annual forb production is also needed. Our objective was to examine effects of fire seasonality and intensity on the woody legume honey mesquite (Prosopis glandulosa Torr.), the C4 midgrass tobosagrass (Pleuraphis mutica Buckl.), and the annual forb common broomweed (Amphiachyris dracunculoides [DC.] Nutt.). Treatments included summer fires, high-intensity winter fires, low-intensity winter fires, and no burn in replicated plots. None of the fire treatments caused whole-plant mortality (root kill) in mesquite. Mesquite aboveground mortality (top kill) was much greater after summer and high-intensity winter fires than low-intensity winter fires. Tobosagrass total yield (live + dead) was lower following summer fires and was not enhanced by any of the fire treatments for two growing seasons postfire when compared to the no-burn condition. However, tobosagrass live yield was 40% greater in the high-intensity winter fire treatment than the no-burn condition the first summer postfire and recovered in the other fire treatments by the end of the first growing season postfire. Tobosagrass percentage of live tissue was greatest in the summer fire treatment at the end of each of the two growing seasons postfire. Common broomweed cover increased in the summer fire treatment and decreased in both winter fire treatments relative to the no-burn condition by the end of the first growing season postfire. Summer fire offered no clear advantage over high-intensity winter fire with respect to mesquite suppression. However, the increase in late-season tobosagrass percentage live tissue caused by summer fire may be advantageous for forage quality. In addition, patch burning summer fires to increase broomweed cover in selected areas may be useful for wildlife habitat.  相似文献   

2.
Increases of velvet mesquite (Prosopis velutina Woot.) in southwestern grasslands might have been caused by livestock consumption of fuels that once burned with sufficient frequency and intensity to kill the trees. However, attempts to control mesquite with fire usually have failed. We measured fire damage and 5 years of postfire recovery for 225 mesquite trees > 1 m tall, following a 2002 wildfire that included grasslands differing in fire history, presence vs. 34-year livestock exclusion, and predominance of native vs. exotic grasses. The fire burned 100% of ground cover in ungrazed areas and 65% on grazed lands. Top-kill was 100% for trees in exotic ungrazed grasslands (the areas with highest fuel loads), 79% for trees in ungrazed native grasslands, and 28% for trees in grazed grasslands. Most top-killed trees produced ground sprouts, so that by 2006 the combined foliage volume from ground sprouts and surviving branches was 78% (± 3.2 SE) of preburn foliage volume in grazed areas, 66% (± 3.3) in ungrazed exotic grasslands, and 57% (± 4.0) in ungrazed native grasslands. Fire damage was greater among surviving trees in ungrazed areas that had burned twice (1987 and 2002) than among those that had burned only once since 1968 (in 2002), especially in native grasslands where postfire foliage recovery for twice-burned trees was only 47% (± 6.3) by 2006. Only 1 of 84 trees died in the area burned once, whereas 12 of 66 (18.2%) died in the area burned twice, including several individuals > 3 m tall. These results suggest that repeated fires likely could have prevented the historic spread of velvet mesquite into southwestern grasslands, but probably could be used to control mesquite today only in areas where abundant herbaceous growth provides sufficient fine fuels.  相似文献   

3.
Much interest lies in long-term recovery rates of sagebrush communities after fire in the western United States, as sagebrush communities comprise millions of hectares of rangelands and are an important wildlife habitat. Little is known about postfire changes in sagebrush canopy cover over time, especially at a landscape scale. We studied postfire recovery of shrub canopy cover in sagebrush-steppe communities with the use of spectral mixture analysis. Our study included 16 different fires that burned between 1937 and 2005 and one unburned site at the US Sheep Experiment Station in eastern Idaho. Spectral mixture analysis was used with September 2006 Systeme Pour l’Observation de la Terre-5 (SPOT-5) satellite imagery to estimate percent shrub canopy cover within pixels. Very large-scale aerial (VLSA) imagery with 24-mm resolution was used for training and validation. SPOT-5 image classification was successful and the spectral mixture analysis estimates of percent shrub canopy cover were highly correlated with the shrub canopy cover estimates in the VLSA imagery (R2 = 0.82; P < 0.0001). Additional accuracy assessment of shrub classification produced 85% overall accuracy, 98% user’s accuracy, and 78% producer’s accuracy. This successful application of spectral mixture analysis has important implications for the monitoring and assessment of sagebrush-steppe communities. With the use of the percent shrub canopy cover estimates from the classified SPOT-5 imagery, we examined shrub canopy recovery rates since different burn years. With the use of linear-plateau regression, it was determined that shrub cover in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities recovered approximately 27 yr after fire, with an average shrub cover of 38%. These results are consistent with other field-based studies in mountain big sagebrush communities.  相似文献   

4.
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha?1; between 32% and 92% of the total loading was composed of live and dead big sagebrush. Fuel consumption ranged from 0.8–22.3 Mg · ha?1, which equates to 11–99% of prefire loading (mean = 59%). Model predictors include prefire shrub loading, proportion of area burned, and season of burn for shrub fuels (R2 = 0.91). Models for predicting proportion of area burned for spring and fall fires were also developed (R2 = 0.64 and 0.77 for spring and fall fire models, respectively). Proportion of area burned, an indicator of the patchiness of the fire, was best predicted from the coverage of the herbaceous vegetation layer, wind speed, and slope; for spring fires, day-of-burn 10-h woody fuel moisture content was also an important predictor variable. Models predicted independent shrub consumption measurements within 8.1% (fall) and 12.6% (spring) for sagebrush fires.  相似文献   

5.
Fire plays a large role in structuring sagebrush ecosystems; however, we have little knowledge of how vegetation changes with time as succession proceeds from immediate postfire to mature stands. We sampled at 38 sites in southwest Montana dominated by 3 subspecies of big sagebrush (Artemisia tridentata Nutt.). At each site we subjectively located 1 sample plot representing the burned area and an unburned macroplot in similar, adjacent, unburned vegetation. Canopy cover of sagebrush was estimated, and plants were counted in 10 microplots. Age and height of randomly chosen sagebrush plants in each size class were determined from 5 microplots. Average postfire time to full recovery of mountain big sagebrush (ssp. vasseyana [Rydb.] Beetle) canopy cover was 32 years, shorter for basin (ssp. tridentata) and much longer for Wyoming (ssp. wyomingensis Beetle & Young) big sagebrush. Height recovered at similar rates. There was no difference in canopy cover or height recovery between prescribed fires and wildfires in stands of mountain big sagebrush. We found no relationship between mountain big sagebrush canopy cover recovery and annual precipitation, heat load, or soil texture. Nearly all unburned sagebrush macroplots were uneven-aged, indicating that recruitment was not limited to immediate postfire conditions in any of the subspecies. Average canopy cover of three-tip sagebrush (A. tripartita Rydb.) did not increase following fire, and many three-tip sagebrush plants established from seed instead of sprouting. Our results suggest that the majority of presettlement mountain big sagebrush stands would have been in early to midseral condition in southwest Montana assuming a mean fire interval of 25 years. Only long fire-return intervals will allow stands dominated by Wyoming big sagebrush to remain on the landscape in our study area. We speculate that effects of site-specific factors conducive to sagebrush recovery are small compared to stochastic effects such as fire.  相似文献   

6.
Prescribed fire is used to reduce size and density of prickly pear cactus (Opuntia spp.) in many rangeland ecosystems. However, effects of dormant season fires (i.e., winter fires) are inconsistent. Thus, there is increasing interest in use of growing season (summer) fires. Our objective was to evaluate effects of fire season and fire intensity on mortality and individual plant (i.e., “motte”) structure (area per motte, cladodes per motte, motte height) of brownspine prickly pear (O. phaeacantha Engelm.). The study had 4 treatments: no fire, low-intensity winter fire, high-intensity winter fire, and summer fire. Three sizes of prickly pear mottes were evaluated: small (0–20 cladodes per motte), medium (21–100), and large (101–500). At 3 years postfire, prickly pear mortality in the summer fire treatment was 100% in small mottes, 90% in medium mottes, and 80% in large mottes. Motte mortality increased in this treatment over time, especially in large mottes. Mortality from high-intensity winter fires was 29% and 19% in small and medium mottes, respectively, but no large mottes were killed. Motte mortality was < 10% in low-intensity winter fire and no-fire treatments. Summer fires reduced all motte structural variables to 0 in small mottes and nearly 0 in other motte size classes. High-intensity winter fires reduced some structural variables of medium and large mottes, but had no long-term negative effects on area per motte or cladodes per motte in surviving small mottes. Low-intensity winter fires had no long-term negative effects on motte structure in any size class. Rapid growth of mottes, and especially small mottes, in the no-fire treatment suggested that resistance to winter fires can occur rapidly.  相似文献   

7.
A review of literature shows that both fire and invasive species may cause changes in biological, chemical, and physical properties of desert soils. Although soil may recover from the impacts of fire during succession, these changes are permanent under persistent invasive species. The most severe effects of fire occur under high temperatures with high fuel buildup and soil moisture that conducts heat downward. Deserts typically have low fuel mass and low soil moisture, both conditions that would contribute to lower impacts of fire than in mesic soils. Soil is a good insulator, so soil microorganisms will survive a few centimeters deep even in hot surface fires. Immediately postfire there is often an increase in mineral nitrogen (N) and a decrease in soil carbon (C) and organic N, but these changes are often minimal in desert soils, except under fertile shrub islands that have higher fuel loads and fire temperature. Both hot and cold deserts have experienced slow recovery of native shrubs and increased growth of invasive grasses following fire. Invasive species may either increase or decrease soil N and C depending on fire temperature and site and species characteristics. Mineralization and fixation of N are often high enough after fire that subsequent productivity balances N losses. The elimination of islands of fertility coupled with postfire erosion may be a major impact after fire in grass-invaded shrub lands. In the long term, the interaction of fire and invasive species may result in more frequent fires that eliminate fertile islands and reduce the productivity of deserts. Managers may use fire as a tool to control desert invasives without the concern that N will be irrevocably lost, but this must be done judiciously to avoid eliminating shrubs and further increasing invasive species.  相似文献   

8.
Western juniper (Juniperus occidentalis Hook.) encroachment and exotic annual grass (medusahead [Taeniatherum caput-medusae L. Nevski] and cheatgrass [Bromus tectorum L.]) invasion of sagebrush (Artemisia L.) communities decrease ecosystem services and degrade ecosystem function. Traditionally, these compositional changes were largely confined to separate areas, but more sagebrush communities are now simultaneously being altered by juniper and exotic annual grasses. Few efforts have evaluated attempts to restore these sagebrush communities. The Crooked River National Grassland initiated a project to restore juniper-encroached and annual grass-invaded sagebrush steppe using summer (mid-July) applied prescribed fires and postfire seeding. Treatments were unburned, burned, burned and seeded with a native seed mix, and burned and seeded with an introduced seed mix. Prescribed burning removed all juniper and initially reduced medusahead cover but did not influence cheatgrass cover. Neither the native nor introduced seed mix were successful at increasing large bunchgrass cover, and 6 yr post fire, medusahead cover was greater in burned treatments compared with the unburned treatment. Large bunchgrass cover and biological soil crusts were less in treatments that included burning. Exotic forbs and bulbous bluegrass (Poa bulbosa L.), an exotic grass, were greater in burned treatments compared with the unburned treatment. Sagebrush communities that are both juniper encroached and exotic annual grass invaded will need specific management of both juniper and annual grasses. We suggest that additional treatments, such as pre-emergent herbicide control of annuals and possibly multiple seeding events, are necessary to restore these communities. We recommend an adaptive management approach in which additional treatments are applied on the basis of monitoring data.  相似文献   

9.
Shrub encroachment into grasslands is a worldwide phenomenon with no signs of abating and numerous ecological consequences. In South Texas, honey mesquite (Prosopis glandulosa Torr.) and huisache (Vachellia farnesiana [L.] Wight & Arn.) are two shrubs encroaching into coastal prairies, reducing cover of the dominant native grass, gulf cordgrass (Spartina spartinae [Trin.] Merr. ex Hitchc.), and decreasing habitat for the endangered Aplomado Falcon (Falco femoralis), which requires grasslands or savannas for survival. To determine the best management approach for deterring shrub encroachment and restoring native grasslands, the US Fish and Wildlife Service used several shrub removal techniques within coastal prairies of the Bahía Grande Wetland Complex of the Laguna Atascosa National Wildlife Refuge, a core site for Aplomado Falcon reintroductions. Here, we assess native grass recovery over a 2-yr period in response to these shrub removal methods (mechanical plus prescribed fire and/or herbicide treatments) and degree of shrub encroachment before treatment. In general, areas with high levels of shrub encroachment before treatment had the highest amount of bare ground and lowest grass cover immediately following an initial mechanical treatment; this legacy effect persisted throughout the study irrespective of shrub removal treatment. Regardless of degree of shrub encroachment before treatment, grasses in areas treated with either mechanical or mechanical followed by herbicide methods recovered the slowest, likely due to residual woody material that hindered seed germination. Herbicide treatment following mechanical removal or mechanical removal plus fire effectively hindered shrub regrowth. Overall, mechanical treatment followed by prescribed fire and then herbicide application most effectively promoted grass recovery while hindering shrub regrowth. These findings suggest that grassland recovery following shrub encroachment into South Texas coastal prairies may be promoted through the application of shrub removal methods that combine mechanical, fire, and herbicide treatments.  相似文献   

10.
Woody plants can cause localized increases in resources (i.e., resource islands) that can persist after fire and create a heterogeneous environment for restoration. Others have found that subcanopies have increased soil organic matter, nitrogen, and carbon and elevated post-fire soil temperature. We tested the hypothesis that burned sagebrush subcanopies would have increased seedling establishment and performance of post-fire seeded perennial bunchgrasses compared to burned interspaces. We used a randomized complete block design with five study sites located in southeast Oregon. The area was burned in a wildfire (2007) and reseeded in the same year with a seed mix that included non-native and native perennial bunchgrasses. Seedling density, height, and reproductive status were measured in October 2008 in burned subcanopy and interspace microsites. Non-native perennial grasses had greater densities than native species (P < 0.001) and were six times more abundant in burned subcanopies compared to burned interspaces (P < 0.001). Density of natives in burned subcanopies was 24-fold higher than burned interspaces (P = 0.043). Seedlings were taller in burned subcanopies compared to burned interspaces (P = 0.001). Subcanopy microsites had more reproductive seedlings than interspace microsites (P < 0.001). Our results suggest that under the fire conditions examined in this study, pre-burn shrub cover may be important to post-fire restoration of perennial grasses. Determining the mechanisms responsible for increased seeding success in subcanopy microsites may suggest tactics that could be used to improve existing restoration technologies.  相似文献   

11.
12.
In 1998, fires burned more than 11 330 ha of rangeland on Dugway Proving Ground in Utah's west desert. Postfire revegetation was implemented in 2 affected salt desert shrub communities (greasewood; Sarcobatus vermiculatus Hook. and black sagebrush/shadscale; Artemisia nova A. Nels; Atriplex confertifolia Torr. & Frem.) to deter cheatgrass (Bromus tectorum L.) encroachment. We monitored cheatgrass densities for 3 years after the fire in burned drill seeded, burned not-seeded, and unburned plots to assess the rate of invasion and determine the impact on cheatgrass of drill seeding perennial species. Cheatgrass invaded quickly in both shrub sites following the fires. In the greasewood site, drill seeded species germinated but did not establish. This was likely due to a combination of soil salinity and extremely dry weather conditions during the second year of the study. Drill seeded species in the black sagebrush site germinated and established well, resulting in the establishment of 16.5 perennial grasses · m-2 and 1 356 shrubs · ha-1. Cheatgrass densities were consistently lower in drill seeded versus not-seeded plots, although these were not always statistically different when Bonferroni comparisons were considered. The initial decrease in cheatgrass densities in drill seeded plots may have resulted from soil disturbance coupled with extremely low precipitation rather than competitive effects. Nevertheless, as seeded species mature and increase their competitive ability, we predict long-term suppression of cheatgrass in the absence of further disturbance.  相似文献   

13.
Successful postfire reseeding efforts can aid rangeland ecosystem recovery by rapidly establishing a desired plant community and thereby reducing the likelihood of infestation by invasive plants. Although the success of postfire remediation is critical, few efforts have been made to leverage existing geospatial technologies to develop methodologies to assess reseeding success following a fire. In this study, Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data were used to improve the capacity to assess postfire reseeding rehabilitation efforts, with particular emphasis on the semiarid rangelands of Idaho. Analysis of MODIS data demonstrated a positive effect of reseeding on rangeland ecosystem recovery, as well as differences in vegetation between reseeded areas and burned areas where no reseeding had occurred (P < 0.05). We conclude that MODIS provides useful data to assess the success of postfire reseeding.  相似文献   

14.
The decline of traditional pastoral systems has highlighted the problem of managing shrub encroachment on successional shrublands in the Mediterranean region, especially in marginal habitats. A long-term study of the response of ecosystem dynamics to phosphate amelioration and shrub control was initiated in 1988 on an area of phosphorus deficient terra rossa, dominated by dwarf shrubs that had been burnt in the summer of that year. The treatments were imposed in a replicated factorial design once at the beginning of the study. The area was previously grazed yearlong by goats, but during the experiment beef cattle grazed the area during the summer of each year. Without herbicide control, shrub cover reached its preburn level within 5 years, but with shrub control after 17 years, it had not yet reached the preburn level. The average shrub cover over the whole experimental period was 41.9%–49.1% without herbicide and 13.5%–24.4% with (P < 0.0001, SE of the difference = 3.99). The effect of phosphate application on shrub cover was not significant, but cover of herbaceous vegetation increased (P < 0.0016, SE of difference = 5.03). A “state and transition” scheme was constructed that defines the interventions necessary to buffer any one of the states against the pressures of successional processes. Vegetation states were defined by the dominance of either herbaceous vegetation or one of two spiny shrub species, Prickly burnet (Sarcopoterium spinosum, Rosaceae) and Calicotome villosa (Fabaceae). The timing and scale of the interventions depend largely on landscape management objectives and on available economic and logistic resources. We conclude that appropriate management of grazing, periodic control of the shrub component, and occasional soil nutrient amelioration can lead to the development of attractive open woodland with a productive herbaceous understory that provides a wider range of ecological services than a landscape dominated by the undisturbed successional shrub thickets.  相似文献   

15.
Yellow bluestem (Bothriochloa ischaemum [L.] Keng var. songarica [Rupr. ex Fisch & C.A. Mey] Celarier & Harlan) is a non-native, invasive C4 grass common in southern Great Plains rangelands. We measured the effects of a single late-summer (September 2006) fire on yellow bluestem at two sites in central Texas (Fort Hood and Onion Creek). At Fort Hood, relative frequency of yellow bluestem in burned plots decreased from 74 ± 4% (preburn; mean ± standard error) to 9 ± 2% (2007) and remained significantly lower compared with unburned plots through 2009 (burned: 14 ± 2%; unburned: 70 ± 14%). At Onion Creek, yellow bluestem initially decreased from 74 ± 5% (2006) to 32 ± 7% (2007). Yellow bluestem recovered substantially by 2009 (67 ± 10%) but was still significantly lower than in unburned transects (96 ± 1%). Relative frequency of other graminoids increased significantly in burned plots (compared with preburn values) at Fort Hood (preburn: 11 ± 4%; 2009: 29 ± 7%) but not at Onion Creek (preburn: 24 ± 6%; 2009: 22 ± 7%). Frequency of forbs increased dramatically in the first growing season after fire (Fort Hood: 15 ± 2% to 76 ± 3%; Onion Creek: 2 ± 2% to 45 ± 5%), then decreased through the third growing season (Fort Hood: 57 ± 6%; Onion Creek: 11 ± 4%). Key differences between the sites include much higher biomass at Fort Hood than at Onion Creek (8 130 kg ? ha-1 vs. 2 873 kg ? ha-1), more recent grazing at Onion Creek (ending in 2000 vs. before 1996 at Fort Hood), and higher rainfall after the Onion Creek burn (214 mm in 20 days vs. 14 mm). Late-summer fire can temporarily decrease yellow bluestem frequency, but effects vary with site conditions and precipitation. Restoring dominance by native grasses may require additional management.  相似文献   

16.
We conducted a study on how Acacia sieberiana respond to repeated burning in the Kidepo National Park in northeastern Uganda. The study was conducted to understand effects of common burning regimes (early dry season, late dry season, and no burn [control]) in the area on Acacia sieberiana. The three treatments were applied for three consecutive years to 14 replicate blocks in a randomized block design. All A. sieberiana trees were number tagged and monitored for height and girth (diameter at breast height) growth. All fires were set as head-fires and attained intensity ranging between 422 and 5693 kW · m−1. Both early and late dry season burning increased the number of small (< 49 cm) A. sieberiana trees after 2 yr. Burning did not affect the growth rates. Although the number of trees < 49 cm increased after 2 yr, the mortality in this height class was also increased by the late dry season burning, and after 3 yr of consecutive burning there were no statistical treatment differences in the height class < 49 cm. Late dry season burning also led to high mortality among trees > 250 cm in the third year. Mortality attributed to elephant browsing was important in all treatments but a substantial portion of mortality could not be attributed to any particular cause. In the late burn, fire was the most important mortality factor. Thus, 2 yr of burning may be used as a tool to stimulate recruitment of A. sieberiana, but additional years of late dry season burning will increase the mortality of older trees.  相似文献   

17.
This study evaluated the efficacy of prescribed fire applied within landscape-scale rotational grazing treatments to reduce mesquite (Prosopis glandulosa Torr.) encroachment and restore herbaceous productivity and cover. One-herd, multiple-paddock rotational grazing was used to accumulate herbaceous fine fuel for fires via prefire deferment and to provide periodic postfire deferment for grass recovery. Treatments were an unburned continuous-grazed control, a four-paddock-1 herd system with fire (4:1F), and an eight-paddock-1 herd system with fire (8:1F), with two replicates per treatment (1 294–2 130 ha per replicate). The management plan was to burn 25% of each system (one paddock in the 4:1F; two paddocks in the 8:1F treatments) and defer grazing during all or portions of the 9 mo (May to January) prior to burning. Deferral was “internalized” by grazing on the remaining 75% of each treatment without reducing stocking rate determined for the entire system. Mesquite cover increased on clay-loam soils from 22% to 40% in unburned paddocks over 7 yr (1995–2001). This increase, coupled with extended drought, reduced fine fuel amounts for fire and limited the number and intensity of fires that were applied. It was possible to burn one paddock in the 8:1F treatment (12.5% of total area), but not in the 4:1F treatment (25% of total area) during drought. Fires reduced mesquite and cactus (Opuntia spp.) cover by 25–79% and 24–56%, respectively, but cover of these species increased to prefire levels within 6 yr. All fires reduced (P ≤ 0.05) total herbaceous biomass for 1 yr postfire. The 8:1F treatment increased (P ≤ 0.05) grass biomass on loamy-bottom soils and reduced (P ≤ 0.05) bare ground on clay-loam and loamy-bottom soils in unburned paddocks compared to the unburned continuously grazed control. The 8:1F treatment, through internalized grazing deferment, facilitated the application of fire to reduce woody cover during extended drought without degrading the herbaceous understory.  相似文献   

18.
In 1999–2001 wildfires burned 1.13 million ha across northern Nevada, burning through many grazed riparian areas. With increases in wildfire frequency and extent predicted throughout the Great Basin, an understanding of the interactive effects of wildfire, livestock grazing, and natural hydrologic characteristics is critical. A comparison of pre- and postfire stream surveys provided a unique opportunity to statistically assess changes in stream survey attributes at 43 burned and 38 unburned streams. Livestock grazing variables derived from an extensive federal grazing allotment inventory were used to identify interactive effects of grazing strategies, fire, and natural stressors across 81 independent riparian areas. Differences between baseline and “postfire” stream survey attributes were evaluated for significance using the nonparametric Mann–Whitney test for paired data. Binary logistic regression models evaluated the influence of fire, grazing, and hydrologic characteristics on observed stream survey attribute changes. Grazing attributes contributed most significantly to the bankfull width increase and bank stability rating decrease models. The odds of bankfull width degradation (increase in bankfull width) decreased where there had been rest is some recent years compared to continuous grazing. As the number of days grazed during the growing season increased, the odds of bank stability degradation also increased. The occurrence of fire was not significant in any model. Variation in the riparian width model was attributed primarily to hydrologic characteristics, not grazing. For the models in which grazing variables played a role, stream survey attributes were more likely to improve over time when coupled with a history of rotational grazing and limited duration of use during the growing season. This supports long-term riparian functional recovery through application of riparian complementary grazing strategies.  相似文献   

19.
Plant demographic responses to an experimental summer fire were monitored for 12 yr on the Sevilleta National Wildlife Refuge, New Mexico, to determine recovery rates of burned plants and evaluate fire effectiveness in preventing shrub invasion of desert grasslands. Fourteen common species of grasses, shrubs, yucca, and cacti were measured for mortality, resprouting, regrowth, herbivory, and reproduction. After the first postfire growing season, black grama (Bouteloua eriopoda [Torr.] Torr.) declined 80% in size, whereas blue grama (Bouteloua gracilis [Willd. ex Kunth] Lag. ex Griffiths) exhibited no decline. Linear regression indicated that B. eriopoda needed 11 yr to recover. Spike dropseed (Sporobolus contractus A.S. Hitchc.) and purple three-awn (Aristida purpurea Nutt.) showed postfire declines in plant sizes, requiring 4- and > 5-yr recovery times, respectively. Sand muhly (Muhlenbergia arenicola Buckl.) exhibited no fire impact. Snakeweed (Gutierrezia sarothrae [Pursh] Britt. & Rusby) sustained 61% fire mortality and reduction in regrowth canopy size. Creosotebush (Larrea tridentata [Sesse & Moc. ex DC.] Coville) had 12% mortality, but survivors recovered over 12 yr. Fourwing saltbush (Atriplex canescens [Pursh] Nutt.) sustained 62% mortality, but recovered plant size in 5–6 yr. Winterfat (Krascheninnikovia lanata [Pursh] A. D. J. Meeuse & Smit) suffered 7% mortality, but required 9+ yr to recover. Pale desert-thorn (Lycium pallidum Miers) survived fire, recovering prefire canopy size in 3 yr. Torrey joint-fir (Ephedra torreyana Watson) exhibited < 1% mortality, and recovered in 2–3 yr. Soapweed yucca (Yucca glauca Nutt.) had < 2% mortality, recovered plant sizes in 2 yr, and increased numbers of rosettes 17%. Chollas (Opuntia imbricata [Haw.] DC. and Opuntia clavata Engelm.) suffered high mortality rates and required > 12 yr recovery times. Results demonstrated that summer fire may counter some shrub and cacti invasion in central New Mexico, but once shrubs mature, fire is less effective in removing woody plants to restore southwestern grasslands.  相似文献   

20.
Abstract

Fire behaviour characteristics were investigated in the montane grasslands of the Natal Drakensberg. The behaviour of experimental fires was measured together with the accompanying biotic and abiotic conditions. Estimates of heat yield, mass of available fuel and forward rate of spread enabled the calculation of intensity of fires in shrublands, woodland and grassland.

The results show marked seasonal differences in fire behaviour for given vegetation types, and give an indication of the conditions under which fires can be safely burned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号