首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this study was to determine the effects of crested wheatgrass (Agropyron cristatum [L.] Gaertn.) defoliation intensity and timing on medusahead density and biomass. We hypothesized that crested wheatgrass defoliation greater than 60% during the spring would provide maximum medusahead (Taeniatherum caput-medsae [L.] Nevski subsp. asperum [Simk.] Melderis; taxonomy from US Department of Agriculture) density and biomass. Eighteen treatments (six defoliation levels, three seasons of defoliation) were applied to 2-m2 plots in a randomized complete block design on two sites with varying clay content. Blocks were replicated five times at each site. Plants were clipped in 2004 and 2005. Crested wheatgrass was hand clipped to defoliation levels of 0%, 20%, 40%, 60%, 80%, and 100% in the spring, summer, or fall. Density of crested wheatgrass and medusahead was sampled in June 2005 and 2006, but their biomass was harvested only in 2006. Data were analyzed with least square means analysis of variance. Over the two seasons, site had much more of an impact on medusahead invasion than either defoliation intensity or timing of defoliation. The results support previous suggestions that clayey soils favor medusahead and that perennial grasses with high biomass can resist this invasive species. On the clayey site where medusahead did persist, fall defoliation of crested wheatgrass reduced the density of this invasive species by 50% or more compared to spring defoliation. Given the developmental pattern of medusahead, the goal of any management program should be to maximize resource use by the desirable species during April to late July.  相似文献   

2.
Spring elk grazing may reduce forage availability for wildlife or livestock in summer and may harm forage resources on foothill rangeland. We quantified bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Love) response to spring defoliation on foothill rangeland in southwestern Montana. Two experiments were conducted simultaneously on a foothill grassland site and a foothill sagebrush steppe site. Bluebunch wheatgrass plants (n = 800) were selected and excluded from wild and domestic ungulates. Clipping treatments were applied in either early spring (mid- to late April) or late spring (mid- to late May), and plants were clipped to 1 of 3 residual heights (3, 6, or 9 cm) for 1, 2, or 3 successive years. Unclipped plants served as controls. Plant response was measured in late June and late July on both sites. April clipping for 3 successive years did not adversely affect bluebunch wheatgrass in June or July (P > 0.05) at either site. On foothill grassland, May defoliation to 3 cm for 2 consecutive years reduced leaf height (P = 0.04) in July. May defoliation for 3 successive years to 3 or 6 cm reduced plant yield (P < 0.05) and leaf height (P < 0.05) in June, and May defoliation for 3 successive years to 3 cm reduced leaf height (P = 0.02) in July. On foothill sagebrush steppe, 3 successive years of May defoliation to ≤ 9-cm stubble heights decreased leaf height in June (P < 0.05). We conclude that foothill rangelands where bluebunch wheatgrass receives moderate or light defoliation (6–9-cm residual stubble heights) in mid- to late May should be limited to no more than 2 successive years of mid- to late May grazing, whereas sites that receive heavy to severe defoliation (≤ 3-cm residual stubble heights) in mid- to late May should not be grazed for 2 successive years during mid- to late May.  相似文献   

3.
4.
Studies of Anderson and Scherzinger's forage conditioning hypothesis have generated varied results. Our objectives were: 1) to evaluate late summer/early fall forage quality of crested wheatgrass (Agropyron desertorum [Fisch. ex Link] J. A. Schultes), bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve), Idaho fescue (Festuca idahoensis Elmer), bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), Thurber's needlegrass (Achnatherum thurberianum [Piper] Barkworth), and basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Löve) from ungrazed paddocks and paddocks grazed at vegetative, boot, and anthesis; and 2) test hypotheses that postgrazing regrowth yields were correlated with soil moisture content when grazing occurred. Crop–year precipitation for 1997 and 1998 was 134% and 205% of average. Crude protein (CP) and in vitro dry matter digestibility (IVDMD) of ungrazed grasses displayed expected declines in quality. Among ungrazed grasses, late summer/early fall CP was 5.7% in 1997 and 3.6% in 1998; IVDMD was 47% and 41%, respectively. Late summer/early fall forage quality was elevated by vegetative, boot stage, or anthesis grazing. The phenologically youngest regrowth always ranked highest in CP and IVDMD. Among grasses, respective 1997 CP and IVDMD means were 9.0% and 55% for regrowth following anthesis grazing. No regrowth followed anthesis grazing in 1998, but CP and IVDMD means from boot stage treatments were 5.5% and 47%, respectively. With CP measures, a species by treatment interaction occurred in 1997, but species reacted similarly in 1998. Vegetative, boot stage, and anthesis grazing in 1997 caused respective late summer/early fall standing crop reductions of 34%, 42%, and 58%; and 34%, 54%, and 100% reductions in 1998. Forage conditioning responses were lower for bluebunch wheatgrass and crested wheatgrass than other grasses. Soil moisture content was a poor predictor of regrowth yields. Managed cattle grazing can successfully enhance late season forage quality.  相似文献   

5.
Root proliferation is important in determining root foraging capability of rangeland grasses to unpredictable soil-nutrient pulses. However, root proliferation responses are often confounded by the inherent relative growth rate (RGR) of the particular species being compared. Additionally, inherent biomass allocation to roots (R:S ratio) can be associated with root RGR, hence likely influencing root foraging responses. The influence of relative growth rate and biomass allocation patterns on the speed and efficiency of root foraging responses at the critical seeding stage was examined in two important perennial rangeland grasses that occur widely in the Great Basin Region of the United States (Whitmar bluebunch wheatgrass [Pseudoroegneria spicata {Pursh} Löve] and Hycrest crested wheatgrass [Agropyron desertorum {Fisch. ex Link} Schult. × A. cristatum L. Gaert.]) as well as in the widespread exotic invasive annual grass, cheatgrass (Bromus tectorum L.). Greenhouse-grown seedlings were exposed to four nutrient regimes: uniform–low, uniform–high, soil-nutrient pulse, soil-nutrient depletion, and to either no clipping or clipping (80% removal of standing shoot biomass). Hycrest was the only species that exhibited root proliferation responses to the short-lived nutrient pulse, and this response occurred through root elongation rather than initiation of lateral root branches. Overall, defoliation inhibited proliferation-based root responses to a larger extent than topological-based root responses. Defoliated plants of Hycrest interrupted root development (topological index did not change) following shoot defoliation compared to undefoliated plants. In contrast, root topological developmental patterns were the same for defoliated and undefoliated plants of Whitmar, whereas cheatgrass exhibited an intermediate response between Whitmar and Hycrest. Our results suggest that inherent biomass allocation to roots contributes to enhanced capabilities of proliferation-based root responses.  相似文献   

6.
Juniper (Juniperus spp.) encroachment into sagebrush (Artemisia spp.)-bunchgrass communities has reduced understory cover on millions of hectares of semiarid rangelands. Mechanical masticators shred trees to restore desirable vegetation and reduce the potential for catastrophic wildfire. Mechanical mastication where juniper density is high and perennial grass cover is low brings a risk of invasive weed dominance unless perennial species are established. To determine whether juniper mastication favors annual- or perennial-grass establishment, we compared seedling emergence, tillers, and aboveground biomass of cheatgrass (Bromus tectorum L.) and Anatone bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve). Comparisons were made among hand-planted rows between and under juniper canopies of masticated and adjacent untreated control areas at three locations in Utah. Bluebunch wheatgrass had 16% (95% CI: 11–21) and cheatgrass had 10% (95% CI: 5–15) fewer seedlings emerge per row in masticated than untreated areas (P < 0.001). However, bluebunch wheatgrass had 3.2 (95% CI: 2.0–5.2) times more tillers and 1.9 (95% CI: 1.6–2.2) times more aboveground biomass per row in masticated than untreated areas (P < 0.001). Similarly, cheatgrass had 2.3 (95% CI: 1.5–3.8) times more tillers, 2.0 (95% CI: 1.7–2.4) times more aboveground biomass, and 11.4 (95% CI: 6.3–20.7) times more spikelets per row in masticated than untreated areas (P < 0.001). This increased seedling growth in masticated areas was associated with increased inorganic nitrogen and soil water compared to untreated areas. Because mastication improves the growth of both cheatgrass and bluebunch wheatgrass seedlings, it could support dominance by either annual- or perennial-life forms. To avoid cheatgrass dominance where perennial understory cover is limited and cheatgrass propagule pressure is high, mastication should be accompanied by seeding desirable perennial species such as Anatone bluebunch wheatgrass.  相似文献   

7.
In sagebrush rangelands perennial bunchgrasses are typically seeded in fall and a high proportion of planted seeds germinate prior to winter onset but fail to emerge in spring. Our objectives were to evaluate freezing tolerance of germinated but nonemergent bluebunch wheatgrass seeds under laboratory conditions. We used data from a 2-yr pilot study to determine overwinter freezing temperature and duration for soils in southeastern Oregon. We then conducted two experiments to assess freezing tolerance. In experiment 1, bluebunch wheatgrass seeds were planted in control pots and compared to seeds planted at early, mid, or late postgermination stages. Pots from each treatment were placed in a grow room maintained at 12 h 40 min light/11 h 20 min dark photoperiod, with a constant temperature of 22°C for 30 d either immediately or following a 30-d freeze. In experiment 2, germinated bluebunch wheatgrass seeds were planted in pots that were left nonfrozen or were frozen for a specified duration prior to a 30-d period in the grow room. Emergence density and tillers · seedling?1 were quantified for both experiments. The number of days per year for freezing soil conditions in the pilot study ranged yearly from 25 to 51; maximum duration of continuous freezing was 16.5 and 11.2 d. Freezing reduced or eliminated seedling emergence at all postgermination stages (P < 0.001) and tiller density was reduced by at least 50% (P < 0.001). Maximum reduction in seedling density (P < 0.001) was realized within 4 d of initiation of freezing and tillers · seedling?1 were reduced 30–70% with > 6 d of freezing (P = 0.001). Our data indicate that freezing-associated mortality of germinated but nonemergent bluebunch wheatgrass seedlings can be extremely high and suggest that management practices to reduce prewinter germination of seeds could improve subsequent emergence and seeding success.  相似文献   

8.
Our ability to restore rangelands is limited, and it is unknown if seedling herbivory on its own, or in interaction with other stressors, is a major contributor to restoration failure. To address this, we conducted two experiments: a No Defoliation (ND) experiment (n = 48), in which seedlings from three perennial grasses (crested wheatgrass [Agropyron cristatum {(L.} Gaertn.], bluebunch wheatgrass [Psuedoroegnaria spicata {Pursh} Á. Love], Sandberg bluegrass [Poa secunda J Presl]) were subjected to wet and dry water regimes for 4 mo, and a concurrent Defoliation (D) experiment (n = 95), in which seedlings were factorially assigned to two defoliation treatments—frequency (LOW, HIGH) and intensity (30% vegetation removal, 70% vegetation removal). Indicators of seedling performance were aboveground and belowground biomass (AGB and BGB), root:shoot ratio, tillering, and mortality. The effect size statistic, Hedge’s g, allowed for comparisons between performance measures. Water stress induced reductions in most performance measures: BGB (g = ND: –1.3; D: –1.6), root:shoot ratio (g = ND: n.s.; D: –0.2), and tillering (g = ND: –1.7; D: –1.2), though not significantly for all species. For ABG, water stress interacted with defoliation, reducing performance less at an intensity of 70% (g = –2.0) as opposed to 30% (g = –3.0), but not always significantly in the former. Water stress also caused less reduction in AGB when no defoliation occurred (ND: –0.8; g = D: –2.5). Intensity and frequency of defoliation interacted; seedlings were generally resistant to reductions in performance except at high frequency, 70% defoliation. Agropyron cristatum and P. spicata displayed similar sensitivity to treatments, mostly in terms of changes in AGB and BGB, while P. secunda also experienced increased mortality and reduced tillering. If these differences in sensitivity result in differential survival, herbivory could impact species postrestoration population demographics.  相似文献   

9.
Combined growing- and dormant-season pasture use has potential to increase herbage harvest without causing the undesirable shift in species composition that occurs with excessive utilization. The objective of this study was to determine the effect of summer clipping on winter pastures and winter clipping on summer pastures regarding standing crop, plant community composition, and forage quality. The study was conducted from 2003–2006 at the Antelope and Cottonwood Research Stations located in the mixed-grass prairie of western South Dakota. At each location, the experimental design was a randomized complete block with three replications that included 18 clipping treatments arranged as a split-split plot. Whole plots consisted of four summer clipping dates (May–August). Subplot treatments were two clipping intensities (clipped to residual height to achieve 25% or 50% utilization). Sub-subplots consisted of two winter clipping intensities (unharvested or clipped to a residual height to achieve a total utilization of 65%). Two winter control treatments were arranged in the subplot and split into two clipping intensities of 50% and 65% utilization. Winter biomass for the May 25% clipping treatment was similar to winter biomass for winter-only clipping. No increase in forage quality resulted from summer clipping compared with winter clipping. Three consecutive yr of combined growing-season and dormant-season defoliation to 65% utilization resulted in no change in functional group composition compared with ≤ 50% utilization treatments. Clipping in June resulted in reduced midgrass biomass at both stations and increased shortgrass biomass at Cottonwood. Results suggest that producers could combine growing and dormant-season grazing to increase the harvest of herbage on mixed-grass prairie, but should change season of use periodically to avoid an undesirable shift in plant composition.  相似文献   

10.
Cost-efficient strategies for revegetating annual grass-infested rangelands are limited. Restoration efforts typically comprise a combination of pre-emergent herbicide application and seeding to restore desired plant materials. However, practitioners struggle with applying herbicide at rates sufficient to achieve weed control without damaging nontarget species. The objective of this research was to determine if seed enhancement technologies using activated carbon would improve selectivity of the pre-emergent herbicide imazapic. Bluebunch wheatgrass (Pseudoroegneria spicata) seed was either untreated, coated with activated carbon, or incorporated into “herbicide protection pods” (HPPs) made of activated carbon through a newly developed seed extrusion technique. In a grow-room facility, bluebunch wheatgrass seeds were sown in pots that contained seed of the exotic-annual grass downy brome (Bromus tectorum). After planting, pots were sprayed with 70, 105, 140, or 210 g acid equivalent (ae) · ha-1 of imazapic or left unsprayed. Where herbicide was not applied, downy brome biomass dominated the growing space. Imazapic effectively controlled downy brome and untreated bluebunch wheatgrass. Seed coating improved bluebunch wheatgrass tolerance to imazapic at 70 g ae · ha-1. HPPs provided protection from imazapic at all application rates. When untreated seeds and HPPs are compared at the four levels of herbicide application (excluding the no herbicide level), HPPs on average were 4.8-, 3.8-, and 19.0-fold higher than untreated seeds in density, height, and biomass, respectively. These results indicate that HPPs and, to a lesser extent, activated carbon–coated seed have the potential to further enhance a single-entry revegetation program by providing land practitioners with the ability to apply imazapic at rates necessary for weed control while minimizing nontarget plant injury. Additional research is merited for further development and evaluation of these seed enhancement technologies, including field studies, before they can be recommended as restoration treatments.  相似文献   

11.
Broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) increases and dominates rangelands following disturbances, such as overgrazing, fire, and drought. However, if cattle can be forced to graze broom snakeweed, they may be used as a biological tool to control it. Cattle grazed broom snakeweed in May and August 2004–2007. Narrow grazing lanes were fenced to restrict availability of herbaceous forage to force cattle to graze broom snakeweed. They used 50–85% of broom snakeweed biomass. Mature broom snakeweed plant density declined because of prolonged drought, but the decline was greater in grazed lanes. At the end of the study, density of mature plants in grazed lanes was 0.31 plants · m-2, compared with 0.79 plants · m-2 in ungrazed pastures. Spring precipitation in 2005 was 65% above average, and a new crop of seedlings established following the spring grazing trial. Seedling establishment was greater in the spring-grazed lanes in which the soil had been recently disturbed, compared with the ungrazed transects and summer-grazed lanes. The cattle were not able to use the large volume of new broom snakeweed plants in the spring-grazed pasture. They did reduce the number of seedlings and juvenile plants in the summer-grazed pasture. Intense grazing pressure and heavy use did not adversely affect crested wheatgrass (Agropyron cristatum [L.] Gaertn.) cover, and it was actually higher in the summer grazed lanes than the ungrazed control transects. In moderate stands of broom snakeweed, cattle can be forced to graze broom snakeweed and reduce its density without adversely affecting the associated crested wheatgrass stand.  相似文献   

12.
Root growth is important to the competitive ability of plants, and understanding how herbage defoliation affects root growth has implications for development of management strategies. Objectives were to determine the effects of defoliation intensity and frequency on root characteristics and herbage production of slender wheatgrass (Elymus trachycaulus [Link.] Shinners), Nebraska sedge (Carex nebrascensis C. Dewey), and “Steadfast” birdsfoot trefoil (Lotus corniculatus L.). Plants of each species were transplanted into containers that had been placed in the ground at wet meadow field sites the prior year. There were eight replications of a control and five defoliation treatments, which were combinations of different frequencies (two or five times) and intensities (light or heavy) and haying. Treatments were applied for a single growing season, and aboveground biomass was collected. Containers were extracted in October, and plant crowns, rhizomes, and roots were separated from the soil. Defoliation treatment did not affect total root weight, length, and surface area of Nebraska sedge or birdsfoot trefoil (P>0.10). Slender wheatgrass total root weight was less when defoliated five times (4.46 g·container?1) than when defoliated twice (6.62 g·container?1) during the growing season. More frequent defoliation of slender wheatgrass also reduced length (20%) and surface area (21%) compared to less frequent defoliation. However, defoliation frequency did not affect aboveground biomass. Defoliation intensity did not affect aboveground production or root characteristics of the three species. Abundant soil moisture in meadows likely buffers negative effects of defoliation. For all species, two defoliation events (e.g., haying followed by grazing) does not appear to negatively affect root growth and herbage production.  相似文献   

13.
This paper examines the effects of a single surface application of biosolids (at 20 dry Mg ha? 1) on plant species composition, forage quality and quantity, and C stocks after 14 yr of rest in rangelands of the Central Interior of British Columbia. More than two times the aboveground biomass of grasses and the percent cover of plant litter were found in the biosolids treatment relative to the control, along with reductions in bare soil and microbiotic crust cover. Significantly greater plant uptake of all macronutrients (C, N, P, K, S, Ca, and Mg); most micronutrients (B, Cu, Mn, Mo, and Zn); and Al occurred in the biosolids treatment. P and Cu were the only two nutrients to be more concentrated in the biosolids-treated forage relative to the control forage, while N, Mg, and protein were more concentrated in the control forage. No significant difference in forage digestibility was found between biosolids and control treatments. Bluebunch wheatgrass, the late-seral native grass species, had significantly increased cover and aboveground biomass in the biosolids treatment relative to the control; however, between 2006 and 2016, non-native Kentucky bluegrass had reached > 25% cover in the biosolids plots, perhaps restricting the full recovery of bluebunch wheatgrass. Our findings indicate that biosolids application to ungrazed rangeland can increase long-term forage production and reduce bare soil. However, at our study site biosolids application also led to a long-term shift in the plant community composition away from the late-seral (i.e., bluebunch wheatgrass) trajectory, and the effects of this shift on rangeland health and productivity require further investigation.  相似文献   

14.
Selective grazing can modify the productive capacity of rangelands by reducing competitiveness of productive, palatable species and increasing the composition of more grazing-resistant species. A grazing system (season-long and short-duration rotational grazing) × stocking rate (light: 16 steers · 80 ha-1, moderate: 4 steers · 12 ha-1, and heavy: 4 steers · 9 ha-1) study was initiated in 1982 on northern mixed-grass prairie. Here, we report on the final 16 years of this study (1991–2006). Spring (April + May + June) precipitation explained at least 54% of the variation in peak standing crop. The percentage of variation explained by spring precipitation was similar between stocking rates with short-duration grazing but decreased with increasing stocking rate for season-long grazing. April precipitation explained the greatest percentage of the variation in peak standing crop for the light stocking rate (45%), May precipitation for the moderate stocking rate (49%), and June precipitation for the heavy stocking rate (34%). Peak standing crop was 23%–29% greater with light (1 495 ± 66 kg · ha-1, mean ± 1 SE) compared to moderate (1 218 ± 64 kg · ha-1) and heavy (1 156 ± 56 kg · ha-1) stocking rates, which did not differ. Differences in peak standing crop among stocking rates occurred during average and wet but not dry springs. Neither the interaction of grazing system and stocking rate nor grazing system alone affected standing crop across all years or dry, average, or wet springs. Grazing-induced modification of productive capacity in this northern mixed-grass prairie is attributed to changes in species composition with increasing stocking rate as the less productive, warm-season shortgrass blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Griffiths) increases at the expense of more productive, cool-season midheight grasses. Land managers may need to substantially modify management to offset these losses in productive capacity.  相似文献   

15.
Defoliation intensity and timing are two important factors determining plants response to grazing. These factors can be managed by adjusting stocking rate and applying a grazing strategy. In a 6-yr clipping experiment conducted in northwestern Argentina, we assessed the effect of different defoliation intensities (~ 30%, ~ 50%, and ~ 70% removal of the annually produced aboveground biomass) and simulated grazing strategies (continuous grazing, two-paddock rest-rotation, three-paddock rest-rotation, dormant season grazing) on plots of three C4 native bunchgrasses (Pappophorum vaginatum, Trichloris crinita, and Digitaria californica). Response variables were mean and trend of clipped-off biomass during the 6 yr of treatments, number of inflorescences, and aboveground biomass produced on the year following treatments end (to evaluate residual effect of treatments). Results were species dependent. Mean clipped-off biomass increased with defoliation intensity in T. crinita and D. californica. However, defoliation intensity negatively affected clipped-off biomass trend in T. crinita and the production of P. vaginatum and T. crinita during “residual effect” evaluation. The three species responded positively at least in one response variable to the amount of rest periods in the grazing strategy. Our results are not fully consistent with the concept that forage production is more influenced by defoliation intensity than by grazing strategy: In two of the three species, grazing strategy presented greater impact on response variables than defoliation intensity. When significant “defoliation intensity × grazing strategy” was detected, intensity tended to be more detrimental as grazing strategy allows fewer rest periods. We observed a residual effect of treatments in the three species (generally, negative effect of defoliation intensity and positive effect of grazing strategies with more rest periods). Our results show that dormant season utilization and rest periods are beneficial for maximizing mean clipped-off biomass and ensuring clipped-off biomass trend. High defoliation intensities can maximize short-term clipped-off biomass, but it may produce negative residual effects and trends.  相似文献   

16.
Medusahead (Taeniatherum caput-medusae [L.] Nevski) is an exotic annual grass invading western rangelands. Invasion by medusahead is problematic because it decreases livestock forage production, degrades wildlife habitat, reduces biodiversity, and increases fire frequency. Revegetation of medusahead-invaded sagebrush steppe is needed to increase ecosystem and economic productivity. Most efforts to revegetate medusahead-infested plant communities are unsuccessful because perennial bunchgrasses rarely establish after medusahead control. The effects of prescribed burning (spring or fall), fall imazapic application, and their combinations were evaluated for medusahead control and the establishment of seeded large perennial bunchgrasses. One growing season after treatments were applied, desert wheatgrass (Agropyron desertorum [Fisch. ex Link] Schult.) and squirreltail (Elymus elymoides [Raf.] Swezey) were drill seeded into treatment plots, except for the control treatment. Vegetation characteristics were measured for 2 yr postseeding (second and third year post-treatment). Medusahead was best controlled when prescribed burned and then treated with imazapic (P < 0.05). These treatments also had greater large perennial bunchgrass cover and density compared to other treatments (P < 0.05). The prescribed burned followed by imazapic application had greater than 10- and 8-fold more perennial bunchgrass cover and density than the control treatment, respectively. Prescribed burning, regardless of season, was not effective at controlling medusahead or promoting establishment of perennial bunchgrasses. The results of this study question the long-term effectiveness of using imazapic in revegetation efforts of medusahead-infested sagebrush steppe without first prescribed burning the infestation. Effective control of medusahead appears to be needed for establishment of seeded perennial bunchgrasses. The results of this study demonstrate that seeding desert wheatgrass and squirreltail can successfully revegetate rangeland infested with medusahead when medusahead has been controlled with prescribed fire followed by fall application of imazapic.  相似文献   

17.
Japanese brome (Bromus japonicus Thunb. ex Murr.) is an introduced, annual cool-season grass adapted to the central and northern Great Plains. Japanese brome has negatively impacted perennial grasses and decreased seasonal animal gains. Prescribed spring burning and defoliation have been effective in reducing brome density or cover, but little information directly compares the two common strategies. The objectives of this study were to 1) compare annual spring burning and grazing to reduce Japanese brome populations; and 2) evaluate trends of vegetative composition and biomass in burned, grazed, and unburned rangelands infested with Japanese brome. Paddocks with Japanese brome were assigned to one of four treatments: 1) annual prescribed spring burning, 2) spring grazing, 3) a combination of annual spring burning and grazing, and 4) an idle control. Treatments were applied annually from 2000 to 2004. Japanese brome density was greatest in the idle control in all years, even when low winter and spring precipitation limited Japanese brome recruitment. Late spring Japanese brome density was similar in all treatments with grazing or burning in four of the five seasons. Spring burning resulted in less than 65% litter cover the last 3 years, whereas the idle control and spring grazing had over 80% litter cover the last 4 years. Western wheatgrass (Pascopyrum smithii [Rydb.] A. Löve) decreased with spring grazing in burned and unburned paddocks. Buffalograss (Bouteloua dactyloides [Nutt] J. T. Columbus) composition decreased in the idle control treatment. Blue grama (Bouteloua gracilis [Willd. ex Kunth] Lag. ex Griffiths) and sideoats grama (Bouteloua curtipendula [Michx.] Torr.) composition varied by year. Even though annual burning and spring grazing were equally effective in limiting Japanese brome density and biomass compared to the idle control, Japanese brome was still present after 5 years, which indicates the difficulty of eradicating Japanese brome from ecosystems where it has become naturalized.  相似文献   

18.
放牧和光照对林下栽培草地生产力的影响   总被引:2,自引:0,他引:2  
李志刚  侯扶江  安渊 《草业科学》2011,28(3):414-419
研究了不同放牧强度G0(0只/hm2)、G1(22.2 只/hm2)、G2(44.4只/hm2)和不同光照条件(100%光强、68.83%光强和54.29%光强)对香樟(Cinnamomum camphora)林下混播草地生产力的影响.结果显示,在整个生长季,草地现存量、再生量和净初级生产力在同一放牧强度下均呈现随光照...  相似文献   

19.
Above-ground net primary production (ANPP) of northern wheatgrass (Elymus lanceolatus [Scribn. & J. G. Sm.] Gould) and western porcupine grass (Hesperostipa curtiseta [Hitchc.] Barkworth) was determined after defoliation to a 7.5 cm stubble height on five landform elements in the Northern Mixed Prairie that had been ungrazed for > 25 yr. Landform elements included north aspect–concave slopes, north aspect–convex slopes, south aspect–concave slopes, south aspect–convex slopes, and level uplands. ANPP was determined for 2 yr after defoliating plots once in May, June, July, August, September, October, November, or April. Northern wheatgrass and western porcupine grass ANPP varied among landform elements (P < 0.01), but not with the month of defoliation × landform element interaction (P ≥ 0.22). Month of defoliation did not influence ANPP of northern wheatgrass (P ≥ 0.69), but that of western porcupine grass was reduced by August and September defoliations (P < 0.01). ANPP of both grasses was insensitive to landform element in terms of defoliation responses. Northern wheatgrass ANPP was not responsive to temporal aspects of a single defoliation. With the exception of August and September defoliations, western porcupine grass also was insensitive to a single defoliation in different months. Land managers should consider rest (1 yr nongrazing) following grazing of western porcupine grass in August or September, whereas responses to defoliation in different months suggest northern wheatgrass can be grazed annually.  相似文献   

20.
A study was conducted on upland range in the Nebraska Sandhills to determine differences in plant species frequency of occurrence and standing crop at various topographic positions on pastures grazed with short-duration grazing (SDG) and deferred-rotation grazing (DRG). Pastures within each grazing treatment were grazed at comparable stocking rates (SDG = 1.84 animal unit months (AUM) · ha?1; DRG = 1.94 AUM · ha?1) by cow–calf pairs from 1999 to 2005 and cow–calf pairs and spayed heifers from 2006 to 2008. Plant frequency of occurrence data were collected from permanently marked transects prior to, midway through, and at the conclusion of the study (1998, 2003, and 2008, respectively) and standing crop data were collected annually from 2001 to 2008 at four topographic positions (dune top, interdune, north slope, and south slope). Livestock performance data were collected during the last 3 yr of the study (2006 to 2008). Positive change in frequency of occurrence of prairie sandreed (Calamovilfa longifolia [Hook.] Scribn.) was 42% greater on DRG pastures than SDG after 10 yr. Total live standing crop did not differ between DRG and SDG except in 2001 when standing crop was 23% greater on DRG pastures. Standing crop of forbs and sedge was variable between grazing methods on interdune topographic positions depending on year. Average daily gain of spayed heifers (0.84 ±  kg · d?1 SE) did not differ between SDG and DRG. Overall, SDG was not superior to a less intensively managed grazing method (i.e., DRG) in terms of vegetation characteristics and livestock performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号