首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamin 1 is a neuron-specific guanosine triphosphatase thought to be critically required for the fission reaction of synaptic vesicle endocytosis. Unexpectedly, mice lacking dynamin 1 were able to form functional synapses, even though their postnatal viability was limited. However, during spontaneous network activity, branched, tubular plasma membrane invaginations accumulated, capped by clathrin-coated pits, in synapses of dynamin 1-knockout mice. Synaptic vesicle endocytosis was severely impaired during strong exogenous stimulation but resumed efficiently when the stimulus was terminated. Thus, dynamin 1-independent mechanisms can support limited synaptic vesicle endocytosis, but dynamin 1 is needed during high levels of neuronal activity.  相似文献   

2.
Regulatory role for GTP-binding proteins in endocytosis   总被引:25,自引:0,他引:25  
Guanosine 5'-triphosphate (GTP)-binding proteins have been implicated in the transport of newly synthesized proteins along the secretory pathway of yeast and mammalian cells. Early vesicle fusion events that follow receptor-mediated endocytosis as measured by three in vitro assays were blocked by guanosine 5'-O-(3-thiotriphosphate) and aluminum fluoride. The effect was specific for guanosine nucleotides and depended on the presence of cytosolic factors. Thus, GTP-binding proteins may also have a role in the transport of molecules along the endocytic pathway.  相似文献   

3.
Guanosine 5'-triphosphate (GTP)-binding proteins (G proteins) are involved in exocytosis, endocytosis, and recycling of vesicles in yeast and mammalian secretory cells. However, little is known about their contribution to fast synaptic transmission. We loaded guanine nucleotide analogs directly into a giant nerve terminal in rat brainstem slices. Inhibition of G-protein activity had no effect on basal synaptic transmission, but augmented synaptic depression and significantly slowed recovery from depression. A nonhydrolyzable GTP analog blocked recovery of transmission from activity-dependent depression. Neither effect was accompanied by a change in presynaptic calcium currents. Thus, G proteins contribute to fast synaptic transmission by refilling synaptic vesicles depleted after massive exocytosis.  相似文献   

4.
在植物中,胞外ATP(eATP)作为一种重要的信号分子,调控植物的生长、发育及逆境响应等多种生命活动。这些植物细胞的生命活动与囊泡运输密切相关,然而,eATP是否对植物细胞的囊泡运输具有调控作用尚不清楚。本文利用能够标记囊泡运输的荧光染料FM1-43研究了eATP对胡杨细胞囊泡运输的影响。FM1-43染色结果显示,50 mol/L eATP对胡杨细胞胞吞作用不明显,而高浓度的eATP(200、400 mol/L)则会抑制其胞吞作用,其抑制作用与eATP浓度呈正相关。高浓度的eATP(200、400 mol/L)同样抑制胡杨细胞胞吐作用。而不同浓度的ADP(50、200、400 mol/L)处理则对胡杨细胞囊泡运输无明显影响。这说明高浓度eATP对胡杨细胞囊泡运输的抑制作用不是源于eATP的水解产物,而是来自于其本身的信号作用。药理学实验发现,ATP受体抑制剂PPADS(100 mol/L)能抑制高浓度eATP对胡杨细胞囊泡运输的限制作用,说明eATP是通过嘌呤受体介导的信号通路调控囊泡运输过程。但值得注意的是,嘌呤受体的另一种抑制剂suramin(100 mol/L)却对eATP的抑制作用不明显,因为suramin处理胡杨细胞后eATP(200 mol/L)仍能抑制囊泡运输。这说明在胡杨细胞中某一类与P2X同源的受体介导了高浓度eATP对囊泡运输的抑制作用。综上,eATP作为信号分子可调控胡杨细胞的囊泡运输,并且高浓度eATP对胡杨细胞的囊泡运输具有负调控作用。   相似文献   

5.
用电镜观察了若是韭菜叶内乳汁器与叶肉细胞的超微结构,韭叶乳汁器是一无节不分枝的长管状结构,其壁上有许多初生纹孔场,在纹孔场中有密集的胞间联丝分布,在胞间联丝两侧有些囊泡存在,并有内存与外排现象,这在结构上说明乳汁器与相邻叶肉细胞间存在活跃的物质交换。并观察到叶肉细胞内叶绿体的不同增殖方式。  相似文献   

6.
During synaptic vesicle fusion, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) protein syntaxin-1 exhibits two conformations that both bind to Munc18-1: a "closed" conformation outside the SNARE complex and an "open" conformation in the SNARE complex. Although SNARE complexes containing open syntaxin-1 and Munc18-1 are essential for exocytosis, the function of closed syntaxin-1 is unknown. We generated knockin/knockout mice that expressed only open syntaxin-1B. Syntaxin-1B(Open) mice were viable but succumbed to generalized seizures at 2 to 3 months of age. Binding of Munc18-1 to syntaxin-1 was impaired in syntaxin-1B(Open) synapses, and the size of the readily releasable vesicle pool was decreased; however, the rate of synaptic vesicle fusion was dramatically enhanced. Thus, the closed conformation of syntaxin-1 gates the initiation of the synaptic vesicle fusion reaction, which is then mediated by SNARE-complex/Munc18-1 assemblies.  相似文献   

7.
水分胁迫下不同抗旱性小麦幼苗细胞质膜超微结构的变化   总被引:6,自引:1,他引:6  
水分胁迫导致不同抗旱性小麦细胞质膜发生不同的变化:胁迫120h后,冀麦36(敏感品种)发生细胞质膜的“内排”现象,即质膜内侧一些部位出现形状不一、大小不等的囊泡,与此相反,胁迫120h后,晋麦33(抗旱品种)叶肉细胞质膜却发生了“外排”现象,即在质膜外侧与细胞壁之间出现了一些形状不一的囊泡,并且,随胁迫时间的延长,质壁分离加重,质膜“外排”囊泡逐渐增多。在不条件下,晋麦33幼苗细胞超微结构恢复速度要明显快于冀麦36。  相似文献   

8.
Assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) syntaxin 1, SNAP-25, and synaptobrevin 2 is thought to be the driving force for the exocytosis of synaptic vesicles. However, whereas exocytosis is triggered at a millisecond time scale, the SNARE-mediated fusion of liposomes requires hours for completion, which challenges the idea of a key role for SNAREs in the final steps of exocytosis. We found that liposome fusion was dramatically accelerated when a stabilized syntaxin/SNAP-25 acceptor complex was used. Thus, SNAREs do have the capacity to execute fusion at a speed required for neuronal secretion, demonstrating that the maintenance of acceptor complexes is a critical step in biological fusion reactions.  相似文献   

9.
在屠宰后45分—72小时,本试验对44头杜洛克公猪与哈白母猪一代杂种猪(D×H)背最长肌和内收肌的肌肉电容进行了测量,同时对肌肉的pH 值、失水率和弹硬度也进行了测定。结果表明,电极在肌肉试样的不同测试面所测得的电容值相差不大。背最长肌和内收肌的电容值均随宰后时间的延长而衰减。内收肌在屠宰后24小时、48小时、72小时的电容与背最长肌和内收肌的 pH值、屠宰后4—5小时和24小时的背最长肌的失水率和弹硬度的相关系数,均达到显著或非常显著水准。异常肉质的肌肉电容值低于正常肉质的肌肉电容值,差异达非常显著水准。试验结果初翥表明,屠宰后24小时内收肌的电容值,是简便、迅速而又不损伤胴体的肉质评定和胴体分级的有希望的指标之一。  相似文献   

10.
Simian virus 40 (SV40) utilizes endocytosis through caveolae for infectious entry into host cells. We found that after binding to caveolae, virus particles induced transient breakdown of actin stress fibers. Actin was then recruited to virus-loaded caveolae as actin patches that served as sites for actin "tail" formation. Dynamin II was also transiently recruited. These events depended on the presence of cholesterol and on the activation of tyrosine kinases that phosphorylated proteins in caveolae. They were necessary for formation of caveolae-derived endocytic vesicles and for infection of the cell. Thus, caveolar endocytosis is ligand-triggered and involves extensive rearrangement of the actin cytoskeleton.  相似文献   

11.
Kang PJ  Sanson A  Lee B  Park HO 《Science (New York, N.Y.)》2001,292(5520):1376-1378
In both animal and yeast cells, signaling pathways involving small guanosine triphosphatases (GTPases) regulate polarized organization of the actin cytoskeleton. In the budding yeast Saccharomyces cerevisiae, the Ras-like GTPase Bud1/Rsr1 and its guanosine 5'-diphosphate (GDP)/guanosine 5'-triphosphate (GTP) exchange factor Bud5 are involved in the selection of a specific site for growth, thus determining cell polarity. We found that Bud5 is localized at the cell division site and the presumptive bud site. Its localization is dependent on potential cellular landmarks, such as Bud3 and Axl2/Bud10 in haploid cells and Bud8 and Bud9 in diploid cells. Bud5 also physically interacts with Axl2/Bud10, a transmembrane glycoprotein, suggesting that a receptor-like transmembrane protein recruits a GDP/GTP exchange factor to connect an intrinsic spatial signal to oriented cell growth.  相似文献   

12.
A synapse is a stable adhesive junction between two cells across which information is relayed by directed secretion. The nervous system and immune system utilize these specialized cell surface contacts to directly convey and transduce highly controlled secretory signals between their constituent cell populations. Each of these synaptic types is built around a microdomain structure comprising central active zones of exocytosis and endocytosis encircled by adhesion domains. Surface molecules that may be incorporated into and around the active zones contribute to modulation of the functional state of the synapse.  相似文献   

13.
In muscle fibers which have been exposed for 1 hour to a Ringer solution containing 400 millimolar glycerol and then returned to plain Ringer solution, the transverse tubular system is disrupted. At the same time the membrane capacitance is markedly reduced and hyperpolarizing current pulses no longer produce a slow, progressive increase in potential (creep). The large capacitance of muscle and the phenomenon of "creep" must both depend on an intact transverse tubular system.  相似文献   

14.
GTP结合蛋白(G蛋白)广泛存在于生物界,在细胞信息传导中起着极为重要的开关作用,它可以调控真核生物中高度保守的跨膜信号传导通路。G蛋白可以划分为异源三聚体G蛋白和低分子量G蛋白(Ran)两种类型。Ran是一种大量分布于细胞核内的小分子的GTP酶,在核质运输以及微管蛋白成核过程中具有十分重要的作用。本文主要对G蛋白以及低分子量G蛋白Ran的研究进展做一综述。  相似文献   

15.
Krev-1 is known to suppress transformation by ras. However, the mechanism of the suppression is unclear. The protein product of Krev-1, Rap1A-p21, is identical to Ras-p21 proteins in the region where interaction with guanosine triphosphatase (GTPase) activating protein (GAP) is believed to occur. Therefore, the ability of GAP to interact with Rap1A-p21 was tested. Rap1A-p21 was not activated by GAP but bound tightly to GAP and was an effective competitive inhibitor of GAP-mediated Ras-GTPase activity. Binding of GAP to Rap1A-p21 was strictly guanosine triphosphate (GTP)-dependent. The ability of Rap1A-p21 to bind tightly to GAP may account for Krev-1 suppression of transformation by ras. This may occur by preventing interaction of GAP with Ras-p21 or with other cellular proteins necessary for GAP-mediated Ras GTPase activity.  相似文献   

16.
Rab guanosine triphosphatases (GTPases) regulate vesicle trafficking in eukaryotic cells by reversibly associating with lipid membranes. Inactive Rab GTPases are maintained in the cytosol by binding to GDP-dissociation inhibitor (GDI). It is believed that specialized proteins are required to displace GDI from Rab GTPases before Rab activation by guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factors (GEFs). Here, we found that SidM from Legionella pneumophila could act as both GEF and GDI-displacement factor (GDF) for Rab1. Rab1 released from GDI was inserted into liposomal membranes and was used as a substrate for SidM-mediated nucleotide exchange. During host cell infection, recruitment of Rab1 to Legionella-containing vacuoles depended on the GDF activity of SidM. Thus, GDF and GEF activity can be promoted by a single protein, and GDF activity can coordinate Rab1 recruitment from the GDI-bound pool.  相似文献   

17.
Signaling proteins are thought to be tightly regulated spatially and temporally in order to generate specific and localized effects. For Rac and other small guanosine triphosphatases, binding to guanosine triphosphate leads to interaction with downstream targets and regulates subcellular localization. A method called FLAIR (fluorescence activation indicator for Rho proteins) was developed to quantify the spatio-temporal dynamics of the Rac1 nucleotide state in living cells. FLAIR revealed precise spatial control of growth factor-induced Rac activation, in membrane ruffles and in a gradient of activation at the leading edge of motile cells. FLAIR exemplifies a generally applicable approach for examining spatio-temporal control of protein activity.  相似文献   

18.
Inositol pyrophosphates are recognized components of cellular processes that regulate vesicle trafficking, telomere length, and apoptosis. We observed that pancreatic beta cells maintain high basal concentrations of the pyrophosphate diphosphoinositol pentakisphosphate (InsP7 or IP7). Inositol hexakisphosphate kinases (IP6Ks) that can generate IP7 were overexpressed. This overexpression stimulated exocytosis of insulin-containing granules from the readily releasable pool. Exogenously applied IP7 dose-dependently enhanced exocytosis at physiological concentrations. We determined that IP6K1 and IP6K2 were present in beta cells. RNA silencing of IP6K1, but not IP6K2, inhibited exocytosis, which suggests that IP6K1 is the critical endogenous kinase. Maintenance of high concentrations of IP7 in the pancreatic beta cell may enhance the immediate exocytotic capacity and consequently allow rapid adjustment of insulin secretion in response to increased demand.  相似文献   

19.
G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein (AtRGS1) in Arabidopsis that has a predicted structure similar to a GPCR as well as an RGS box with GTPase accelerating activity. Expression of AtRGS1 complemented the pheromone supersensitivity phenotype of a yeast RGS mutant, sst2Delta. Loss of AtRGS1 increased the activity of the Arabidopsis Galpha subunit, resulting in increased cell elongation in hypocotyls in darkness and increased cell production in roots grown in light. These findings suggest that AtRGS1 is a critical modulator of plant cell proliferation.  相似文献   

20.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号