首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
In many Gram-negative plant pathogenic bacteria the type III secretion system (TTSS), encoded by hrp genes, is essential for pathogenicity in the host and induction of a hypersensitive reaction (HR) in nonhost plants. The expression of hrp genes has been suggested to be repressed in complex media, whereas it is induced in planta and under certain in vitro conditions. We recently reported that XOM2 medium allows efficient hrp expression by Xanthomonas oryzae pv. oryzae. In this study, we investigated hrp-dependent secretion of proteins by the bacteria in vitro. Using modified XOM2, in which bovine serum albumin was added and the pH was lowered to 6.0, we detected at least 10 secreted proteins and identified one as Hpa1. This is the first evidence of protein secretion via TTSS in X. oryzae pv. oryzae.  相似文献   

3.
4.
Like other plant-pathogenic bacteria, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, has hrp genes that are indispensable for its virulence. The hrp genes are involved in the construction of the type III secretion (T3S) apparatus, through which dozens of virulence-related proteins, called effectors, are directly secreted into plant cells to suppress and disturb plant immune systems and/or induce plant susceptibility genes. The expression of hrp genes is strictly regulated and induced only in plants and in certain nutrient-poor media. Two proteins, HrpG and HrpX, are known as key regulators for hrp gene expression. Great efforts by many researchers have revealed unexpectedly that, besides HrpG and HrpX, many regulators are involved in this regulation, some of which also regulate the expression of virulence-related genes other than hrp. Moreover, it has been found that HrpG and HrpX regulate not only hrp genes and effector genes but also genes unrelated to the T3S system. These findings suggest that the expression of the hrp gene is orchestrally regulated with other virulence-related genes by a complicated, sophisticated regulatory network in X. oryzae pv. oryzae.  相似文献   

5.
 为了阐明水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)利用DSF信号群体感应(QS)系统对毒性表达进行调控的机理,本研究对编码QS的rpf基因进行了分子鉴定, 分析了Δrpf基因突变体在水稻叶组织中的种群量变化, 利用RT-qPCR方法定量测定了编码T3SS的hrp基因转录本以及rpf基因自身表达。结果表明,rpfF、rpfC和rpfG基因与几种主要植物病原黄单胞菌同源序列高度保守;RpfF是烯脂酰辅酶A水合酶家族成员之一,RpfC含有组氨酸磷酸激酶结构域(HisKA)和磷酸受体结构域(REC),RpfG含有REC和HD-GYP结构域;Δrpf突变体在水稻叶组织中的种群量及其扩展能力均明显下降; hrp基因转录显著地受到QS调控;rpf基因表达与Xoo种群密度密切相关。因此,Xoo QS系统显著地调控了hrp基因的表达,在QS与T3SS表达之间存在一个信号通路。  相似文献   

6.
Ralstonia solanacearum strain OE1-1 (OE1-1) systemically invades tobacco plants and causes bacterial wilt. A type II secretion system (T2SS)-deficient mutant of OE1-1, derived from EZ::TN<KAN-2>transposon-insertion, retained the ability of the parent strain to produce exopolysaccharide in vitro and grow in intercellular spaces immediately after invasion of host plants, but lost the ability to systemically infect the host. With transmission electron microscopy, the mutant was not observed in xylem vessels. These findings suggest that the T2SS contributes to systemic infection by enabling the bacteria to invade xylem vessels.  相似文献   

7.
Xanthomonas oryzae pv. oryzae causes bacterial blight of rice. Xa23, a bacterial blight resistance gene identified originally in wild rice, Oryza rufipogon, is dominant and resistant to all X. oryzae pv. oryzae field isolates tested. The corresponding avirulence gene avrXa23 is unknown. Here we report the generation of a random insertion mutant library of X. oryzae pv. oryzae strain PXO99 using a Tn5-derived transposon tagging system, and identification of mutant strains that are virulent on CBB23, a near-isogenic rice line containing Xa23. A total of 24,192 Tn5 inserted clones was screened on CBB23 by leaf-cutting inoculation and at least eight of them caused lesions on CBB23 comparable to those on JG30, the susceptible recurrent parent of CBB23. Polymerase chain reaction and Southern blot analysis showed that all the eight mutants, designated as P99M1, P99M2, P99M3, P99M4, P99M5, P99M6, P99M7 and P99M8, have a single Tn5-insertion in their genomes. The flanking DNA sequences of the Tn5-insertion sites were isolated by PCR-walking and sequenced. Bioinformatic analysis of the flanking sequences, by aligning them with the whole genome sequences of X. oryzae pv. oryzae strains PXO99, KACC10331 and MAFF311018 through NCBI, revealed that the Tn5-insertions disrupted genes that encode TAL effector AvrBs3/PthA, ISXo1 transposase, Type II secretion system protein-like protein or outer membrane protein, glycogen synthase, cytochrome C5 and conserved hypothetical protein. Further identification of these mutants will facilitate the molecular cloning of avirulence gene avrXa23. The authors C.-L. Wang, A.-B. Xu contributed equally to this work; Y. Gao and Y.-L. Fan contributed equally to this work.  相似文献   

8.
The gram-negative plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) is able to infect the host rice and effectively colonize in vascular tissues. The type IV pilus (T4P) is one of the major virulence factors playing an important role in migration of Xoo through host vascular tissues. Here, we identified PilN, a T4P alignment subcomplex protein, which is involved in regulation of swimming motility, and analysed its contribution to bacterial surface-associated behaviours and virulence. We found that the pilN deletion mutant exhibited dramatically reduced twitching motility and scarcely detectable levels of T4P major pili PilA, as well as enhanced biofilm formation and exopolysaccharide (EPS) production. In addition, deletion of the pilN gene in Xoo resulted in impaired virulence in host rice and attenuated type III secretion system (T3SS) genes expression, which is independent of PilA assembly. Expression of the relevant pilN gene in trans was capable of restoring twitching motility and biofilm formation to the wild-type levels in the pilN mutant but partially recovering EPS production and virulence. Moreover, the expression of trh and xrvA genes, which encode the HrpG positive regulators, was decreased in the pilN mutant. Our results suggest that PilN executes versatile functions in bacterial virulence and cell surface-associated behaviours.  相似文献   

9.
 水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)的III型分泌系统(Type III secretion system, T3SS)由hrp基因簇编码,其决定在寄主水稻上的致病性。hrcChrp基因簇中hrpA转录单元仅有的一个基因,推测编码T3SS的核心组分蛋白。在Xoo中,hrcC在致病性中的功能以及受调控的机制仍未明确。本研究构建了hrcC的缺失突变体及其功能互补子,发现hrcC缺失使Xoo丧失了在寄主水稻上的致病性以及在非寄主烟草上激发过敏反应(Hypersensitive response, HR)的能力,功能互补子能够恢复这些表型至野生型水平。启动子GUS活性的定量测定和蛋白免疫杂交试验,证明hrcC的转录表达依赖于主要的hrp调控子HrpG,而不受HrpX调控;HrpG和铁转运家族类调控子(Ferric uptake regulator family)Zur以平行独立的方式正调控hrcC基因的转录表达。异源功能互补、启动子活性和蛋白表达试验发现Xoo和水稻条斑病菌(Xanthomonas oryzae pv. oryzicola, Xoc)的hrcC基因在致病性上的功能具有互置性,以及受HrpG、HrpX和Zur的调控模式也具有相似性。这些研究为进一步解析黄单胞菌的hrp调控网络与全毒性调控网络之间的交叉提供了新的线索。  相似文献   

10.
 水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)的III型分泌系统(Type III secretion system, T3SS)由hrp基因簇编码,其决定在寄主水稻上的致病性。hrcChrp基因簇中hrpA转录单元仅有的一个基因,推测编码T3SS的核心组分蛋白。在Xoo中,hrcC在致病性中的功能以及受调控的机制仍未明确。本研究构建了hrcC的缺失突变体及其功能互补子,发现hrcC缺失使Xoo丧失了在寄主水稻上的致病性以及在非寄主烟草上激发过敏反应(Hypersensitive response, HR)的能力,功能互补子能够恢复这些表型至野生型水平。启动子GUS活性的定量测定和蛋白免疫杂交试验,证明hrcC的转录表达依赖于主要的hrp调控子HrpG,而不受HrpX调控;HrpG和铁转运家族类调控子(Ferric uptake regulator family)Zur以平行独立的方式正调控hrcC基因的转录表达。异源功能互补、启动子活性和蛋白表达试验发现Xoo和水稻条斑病菌(Xanthomonas oryzae pv. oryzicola, Xoc)的hrcC基因在致病性上的功能具有互置性,以及受HrpG、HrpX和Zur的调控模式也具有相似性。这些研究为进一步解析黄单胞菌的hrp调控网络与全毒性调控网络之间的交叉提供了新的线索。  相似文献   

11.
水稻条斑病菌(Xanthomonas oryzaepv.oryzicola,Xoc)的hrp基因决定了病原菌在非寄主植物上的过敏反应(hypersensitive response,HR)和在寄主植物上的致病性(pathogenicity),基因产物形成Ⅲ型分泌系统(type-Ⅲ secretion system,T3SS)将致病性效应分子注入寄主细胞从而引起水稻产生抗病性或者感病性反应。以位于hrpB操纵单元的首个hr-pB1基因为对象,通过基因敲除方式对其进行了突变,发现hrpB1突变体丧失了在水稻上的致病性和在烟草上激发HR的能力,并且在水稻组织中的生长能力显著降低。RT-PCR测定结果表明,hrpB1的转录表达受HrpG和HrpX的正调控。免疫杂交结果显示,HrpB1蛋白可通过T3SS进行分泌。这些结果不仅明确了hrpB1基因在病原菌致病性中的功能,而且提示了hrp结构基因不仅仅局限于形成Ⅲ型分泌系统,部分hrp基因产物本身也通过Ⅲ型系统分泌到胞外,并且可能起到效应分子的功能。  相似文献   

12.
为探索田间猕猴桃溃疡病菌Pseudomonas syringae pv. actinidiae(Psa)致病力丧失的分子机制,针对从猕猴桃果园中分离获得的1株不致病菌株G230,通过特异性引物检测和多基因序列分析明确其分类地位,并设计引物检测其是否由已知遗传变异引起,通过比较基因组学、基因表达、超敏反应和荧光素酶报告菌株检测确定引起菌株G230致病力丧失的原因。结果表明,不致病菌株G230为Psa生物型3(Psa3),其致病缺陷不是由已报道的遗传变异引起;基于基因组比较分析发现菌株G230中的hrpS基因被转座子ISPsy36插入破坏,导致Ⅲ型分泌系统(type Ⅲ secretion system,T3SS)不能正常表达;而在不致病菌株G230中表达hrpS基因后能恢复其T3SS功能,使其具备致病能力及激发非寄主超敏反应的能力。表明转座子ISPsy36插入hrpS基因内部可以破坏Psa的T3SS功能进而使其丧失致病力,这是自然条件下Psa3丧失致病力的一种新型机制。  相似文献   

13.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

14.
Xanthomonas axonopodis pv. glycines causes bacterial pustule of soybean, which is a common disease in many soybean-growing areas of the world and is controlled by a single recessive gene (rxp gene) commonly found in many conventional glyphosate-sensitive soybean cultivars. Since glyphosate-tolerant cultivars are commonly planted today, there has been no information about whether these new cultivars have bacterial pustule resistance. The goal of this study was to screen glyphosate-tolerant soybean cultivars for resistance to X. axonopodis pv. glycines. Three experiments were completed to evaluate resistance. In experiment 1, 525 commercial glyphosate-tolerant cultivars from 2001 were inoculated with X. axonopodis pv. glycines strain UIUC-1. Following inoculation, many of the cultivars were resistant (developed no detectable pustule symptoms) although 152 (~29%) developed bacterial pustule. In experiment 2, the aggressiveness of three strains (UIUC-1, UIUC-2, and ATCC 17915) of X. axonopodis pv. glycines were compared on three bacterial pustule-susceptible, glyphosate-tolerant cultivars. One strain (UIUC-1) was less aggressive than the other two (UIUC-2 and ATCC 17915) on all three cultivars examined. In experiment 3, 45 cultivars from 2005 (all different from 2001) were inoculated with X. axonopodis pv. glycines ATCC 17915. A range of disease severities developed with five cultivars (11%) having disease severity ratings as high as or higher than those on a susceptible check cultivar. Overall, these results suggested that resistance to bacterial pustule occurs in glyphosate-tolerant soybean cultivars, but not at 100% frequency, which means bacterial pustule outbreaks could occur when a susceptible cultivar is planted and conditions are conducive for bacterial pustule development.  相似文献   

15.
16.
17.
Foliar spots caused by Pseudomonas coronafaciens pv. garcae (Pcg), Pseudomonas amygdali pv. tabaci (Pat) and Pseudomonas cichorii (Pch) are major bacterial diseases that can reduce coffee production. However, little is known about the genetic diversity and molecular mechanisms underlying the pathogenicity to coffee plants of these bacteria. In this study, genome sequences of Pcg, Pat and Pch strains isolated from coffee plants in Minas Gerais state, Brazil, were used to assess their variability and plasticity, and compare their type III secretion system (T3SS) and apoplastic effector repertoires as well as tabtoxin biosynthetic/detoxification genes. Genomic diversity was found for all three phytopathogens, among which Pch possesses the highest number of exclusive proteins. The Pcg genome is the most stable whereas that of Pch is the most plastic, which is related to their host ranges. When compared with those of Pseudomonas syringae pv. tomato DC3000, hrp/hrc gene sequences are more conserved in Pcg and Pat than in Pch, which also possesses the smallest T3SS and the largest apoplastic effector repertoires. The only T3SS effector family common to all three pathogens is AvrE, suggesting that, as for other plant–Pseudomonas interactions, it may play a crucial role for pathogenicity towards coffee plants. Apoplastic proteins associated with maintaining the redox balance and degrading proteins/peptides not previously described as important in plant–bacteria interactions were found. Gain/loss of the tabtoxin biosynthetic cluster with retention of the antitoxin gene was observed, indicating that tabtoxin production is not a limiting factor for the occurrence of mixed infections.  相似文献   

18.
19.
Copper-containing bactericides have been used to control bacterial canker of kiwifruit, caused by Pseudomonas syringae pv. actinidiae. However, the efficacy of copper has been reduced by the occurrence of copper-resistant strains. Analysis of the DNA sequence of a cluster region containing the copper-resistance genes from P. syringae pv. actinidiae suggested the presence of three possible different systems for copper resistance: copper-trapping, copper-efflux and copper-transport systems. Transposon insertional inactivation analysis indicated that the copper-trapping system was essential for copper resistance.  相似文献   

20.
 寻找抑制植物病原菌III型分泌系统的植物源活性小分子化合物,是研发生物安全农药的重要途径之一。本研究采用水煮提取法从十字花科黑腐病菌寄主植物满身红萝卜中提取分离活性小分子化合物,利用高效液相-质谱联用解析出活性物质的单体结构。然后用荧光素酶基因luxAB构建融合报告系统以及定量PCR检测活性物质对十字花科黑腐病菌III型分泌系统的抑制效果,最后采用剪叶接种和压渗接种的方法研究活性小分子物质对十字花科黑腐病菌的生防作用。研究表明,植物鞘氨醇和二氢鞘氨醇对十字花科黑腐病菌III型分泌系统基因的转录表达有一定程度的抑制作用,但是对I、II、IV型分泌系统基因的表达没有明显的抑制作用。植物鞘氨醇在XCM1上影响菌的生长,而二氢鞘氨醇不影响菌的生长。同时,还发现这两种物质能显著降低Xcc在寄主植株满身红萝卜上的病害症状以及能够使Xcc在非寄主植物辣椒上引起过敏反应的能力丧失。该研究结果为深入研究小分子化合物对十字花科黑腐病菌III型分泌系统的作用机制及后续开发植物源抑制剂提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号