首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Soil organic carbon (SOC) is a key component for sustaining crop production. A field experiment was conducted during 2004–2018 to assess the changes in soil carbon fractions under different fertilization practices in grass-legumes mixture. The result indicates that application of farmyard manure (FYM) at 80 Mg ha–1 has increased SOC concentration leading to carbon sequestration rate of 4.2 Mg ha–1 year–1. Further, it has increased the proportion of labile carbon in the total SOC and have accumulated 126, 60, 83 and 95% higher very labile, labile, less labile and non-labile C stock than that of control plot, respectively, in top 30 cm soil layer. Inorganic fertilization and FYM 20 Mg ha–1 influenced SOC concentration, SOC stock and C sequestration rate similarly. The highest carbon management index (264) was found in the treatment receiving FYM 80 Mg ha–1 and it was positively correlated with SOC (r = 0.84**). The sensitivity index of the SOC varied from 26 to 152% and the differences were greatest in FYM treatments. The result indicates that grass-legumes mixture build-up the SOC in long term and the addition of FYM further increases it.  相似文献   

2.
氧化亚氮(N_2O)是一种重要的痕量温室气体,对全球气温升高和酸雨形成起着重要作用,并对臭氧层造成严重损害。水产养殖是N_2O的潜在释放源,该研究以中国东南沿海的闽江河口湿地围垦养虾塘为研究对象,采用过程抑制法,通过室内培养试验区分N_2O不同产生过程及其对沉积物N_2O总产生速率的贡献,在此基础上分析沉积物理化性质对N_2O产生的影响。结果表明:养虾塘沉积物N_2O总产生速率在养殖初期、中期和末期的均值分别为1.80、5.95和8.70 nmol/(kg·h),其中硝化作用、反硝化作用、硝化细菌反硝化作用和非生物作用的贡献率均值分别为-162.04%、327.52%、-239.45%和90.27%,从而得出结论:反硝化作用和非生物作用是产生沉积物N_2O的主要来源,硝化作用和硝化细菌反硝化作用则对沉积物N_2O的产生有所削弱;养虾塘沉积物N_2O总产生速率在高温低盐条件下最大,在低温高盐条件下出现最小值,总体呈现随着温度升高而增加,随着盐度升高而降低的趋势;相关分析表明N_2O总产生速率与总碳(total carbon,TC)、土壤有机碳(soil organiccarbon,SOC)、NH4+-N含量和C∶N比均呈显著正相关关系,而在其不同产生过程中仅有非生物过程受到TC、SOC含量的显著影响。  相似文献   

3.
Purpose

Characterizations of soil aggregates and soil organic carbon (SOC) losses affected by different water erosion patterns at the hillslope scale are poorly understood. Therefore, the objective of this study was to quantify how sheet and rill erosion affect soil aggregates and soil organic carbon losses for a Mollisol hillslope in Northeast China under indoor simulated rainfall.

Materials and methods

The soil used in this study was a Mollisol (USDA Taxonomy), collected from a maize field (0–20 cm depth) in Northeast China. A soil pan with dimensions 8 m long, 1.5 m wide and 0.6 m deep was subjected to rainfall intensities of 50 and 100 mm h?1. The experimental treatments included sheet erosion dominated (SED) and rill erosion dominated (RED) treatments. Runoff with sediment samples was collected during each experimental run, and then the samples were separated into six aggregate fractions (0–0.25, 0.25–0.5, 0.5–1, 1–2, 2–5, >?5 mm) to determine the soil aggregate and SOC losses.

Results and discussion

At rainfall intensities of 50 and 100 mm h?1, soil losses from the RED treatment were 1.4 and 3.5 times higher than those from the SED treatment, and SOC losses were 1.7 and 3.8 times greater than those from the SED treatment, respectively. However, the SOC enrichment ratio in sediment from the SED treatment was 1.15 on average and higher than that from the RED treatment. Furthermore, the loss of <?0.25 mm aggregates occupied 41.1 to 73.1% of the total sediment aggregates for the SED treatment, whereas the loss of >?0.25 mm aggregates occupied 53.2 to 67.3% of the total sediment aggregates for the RED treatment. For the organic carbon loss among the six aggregate fractions, the loss of 0–0.25 mm aggregate organic carbon dominated for both treatments. When rainfall intensity increased from 50 to 100 mm h?1, aggregate organic carbon loss increased from 1.04 to 5.87 times for six aggregate fractions under the SED treatment, whereas the loss increased from 3.82 to 27.84 times for six aggregate fractions under the RED treatment.

Conclusions

This study highlights the effects of sheet and rill erosion on soil and carbon losses at the hillslope scale, and further study should quantify the effects of erosion patterns on SOC loss at a larger scale to accurately estimate agricultural ecosystem carbon flux.

  相似文献   

4.
对闽江河口原生植被芦苇沼泽,以及由其转化的不同其它土地利用类型(滩涂养殖地、水田、草地、撂荒地和池塘养殖地)的表层(0-50 cm)沉积物(或土壤)有机碳和活性有机碳含量的研究,结果表明,滩涂养殖地、水田、池塘养殖地、草地和撂荒地的土壤有机碳含量分别比芦苇沼泽地低27%,75%,67%,1%,60%;在有机碳储量方面,滩涂养殖地、水田、池塘养殖地和撂荒地比天然芦苇沼泽地分别低11%,50%,37%,24%,草地有机碳储量比芦苇高44%;草地土壤有机碳含量和储量随土层加深而递减的幅度比芦苇地大;水田有机碳含量和储量垂直变化不明显,弃耕后,表层有机碳含量提高,垂直变化明显。不同土地利用方式间土壤活性有机碳含量的差异比有机碳的差异大,与芦苇地相比,滩涂养殖地、水田、池塘、草地活性有机碳含量分别低24%,83%,84%,42%;撂荒10年的弃耕地与水稻田土壤相比,活性有机碳含量提高了47%。  相似文献   

5.
Zhang  Min  Li  Cai  Ma  Xin  Yang  Liyuan  Ding  Shiming 《Journal of Soils and Sediments》2021,21(10):3466-3478
Purpose

Mercury (Hg) and methylmercury (MeHg) are easily released from sediments to overlying water and cause secondary contamination. In general, Hg concentrations are low in natural aquatic environments, but Hg toxicity is high. Therefore, it is important to assess the mobility and release risks of Hg and MeHg from surface sediment using in situ high-resolution sampling techniques.

Methods

The profile distribution of Hg and MeHg was obtained for samples from Weishan sub-lake (WL) and Dushan sub-lake (DL) of Nansi Lake, China, by high-resolution dialysis (HR-Peeper probes) and the diffusive gradients in thin films (DGT) technique at mm-resolution. Furthermore, Hg mobility and release risks in sediments were evaluated by combining BCR (European Community Reference Bureau) extraction and DGT-measured data.

Results

The soluble concentrations of Hg in surface sediments in WL and DL were 21.70 and 19.38 ng L?1 and the DGT-labile concentration of Hg were 8.21 and 10.30 ng L?1, respectively. The soluble and labile Hg and MeHg concentrations were higher in the surface sediments (from??40 to 0 mm) than in deep sediments. The distribution of the labile-Hg was controlled by the ferrimanganic (hydr)oxide and total nitrogen rather than organic carbon content. The non-residual components accounted for a greater proportion of the interface, which further confirmed Hg was more active on the surface layer of the sediment. The resupply ability indicated that the release of Hg from sediment was insufficient to maintain the initial concentration in the porewater before consumption. The MeHg fluxes in WL (6.18 ng m?2 day?1) were twice those in DL (2.89 ng m?2 day?1), and the risk assessment code revealed a higher risk in the surface layer (25.21–61.88%) than in the deep layer (0–27.75%).

Conclusions

Dissolved Hg and MeHg accumulated on the surface of the sediments and were more active than in the deeper sediments. The DGT-labile state can be used for a better understanding of the bioavailability and mobility of Hg. The diffusion direction of Hg and MeHg was from sediment to the overlying water. The release risks of Hg and MeHg from surface sediments (especially in WL) were found to be worthy of concern.

  相似文献   

6.
Thermal analysis techniques have been used to differentiate soil organic carbon (SOC) pools with differing thermal stability. A correlation between thermal and biological stability has been indicated in some studies, while others reported inconsistent relationships. Despite these controversial findings and no standardized method, several recently published studies used thermal analysis techniques to determine the biological stability and quality of SOC in mineral soils. This study examined whether thermal oxidation at temperature levels between 200°C and 400°C, combined with evolving gas analysis and isotope ratio mass spectrometry, is capable of identifying SOC pools with differing biological stability in mineral soils. Soil samples from three sites being under Miscanthus (C4‐plant) cultivation for more than 17 years following former agricultural cropland (only C3‐plant) cultivation were used. Due to natural shifts in 13C content, young and labile Miscanthus‐derived SOC could be distinguished from stable and old C3‐plant‐derived SOC. The proportion of Miscanthus‐derived SOC increased significantly with increasing temperatures up to 350°C in bulk soil samples, indicating increasing oxidation of labile and young SOC with increasing temperatures. Use of density fractions to validate the thermally oxidized SOC from bulk soil samples revealed that the thermal oxidation patterns did not reflect the biological stability of SOC. The suggested biologically labile particulate organic carbon (light fraction from density fractionation) was clearly enriched in Miscanthus‐derived young SOC. The thermal oxidation patterns, however, revealed preferential oxidation of these biologically labile fractions not at low temperatures, but rather at higher temperatures. The reverse was found for the biologically stable mineral‐associated density fraction (heavy fraction). Based on different soil types, it was concluded that the thermal stability of SOC between 200°C and 400°C is not a suitable indicator of the biological stability of SOC and, thus, thermal oxidation is not capable of fractionating SOC pools with differing biological stability.  相似文献   

7.

Purpose

Nitrogen (N) application in excess of assimilatory capacity for aquaculture ponds can lead to water-quality deterioration through ammonia accumulation with toxicity to fish. Ammonia-oxidizing archaea (AOA) and bacteria (AOB) potentially process extra ammonium, so their abundance and diversity are of great ecological significance. This study aimed to reveal variations in communities of AOA and AOB as affected by aquaculture activities.

Materials and methods

From June to September 2012, water and sediments were sampled monthly in three ponds feeding Mandarin fish in a suburb of Wuhan City, China. Molecular methods based on ammonia monooxygenase (amoA) gene were used to determine abundance and diversity of AOA and AOB in the sediments.

Results and discussion

The pond with the highest fish stock had the highest nutrient loadings in terms of different forms of N and carbon (C) in both sediment and water. The abundance and diversity of AOB were significantly higher than those of AOA in the sediment. The AOB abundance showed a significantly positive relationship to concentration of soluble reactive phosphorus (SRP) in interstitial water, and both abundance and diversity of AOA were significantly negative to concentration of ammonium in interstitial water. Furthermore, AOA species affiliated to Nitrososphaera-like and Nitrosophaera Cluster was distinguishable from those observed in other aquaculture environments.

Conclusions

Nutrients in sediment were enriched by intensive aquaculture activity, among which organic N and C, together with ammonium and SRP, shaped the communities of ammonia oxidizers, with AOB dominating over AOA in terms of abundance and diversity.
  相似文献   

8.

Purpose

Soil organic carbon (SOC) sequestration in croplands plays a critical role in climate change mitigation and food security, whereas the stability and saturation of the sequestered SOC have not been well understood yet, particularly in rice (Oryza sativa L.) fields. The objective of this study was to determine the long-term effect of inorganic fertilization alone or combined with organic amendments on SOC stability in a double rice cropping system, and to characterize the saturation behavior of the total SOC and its fractions in the paddy soil.

Materials and methods

Soils were collected from a long-term field experiment in subtropical China where different fertilization regimes have been carried out for 31 years. The total SOC pool was separated into four fractions, characteristic of different turnover rates through chemical fractionation. Annual organic carbon (C) inputs were also estimated by determining the C content in crop residues and organic amendments.

Results and discussion

Relative to the initial level, long-term double rice cropping without any fertilizer application significantly increased SOC concentration, suggesting that double rice cropping facilitates the storage and accumulation of SOC. The partial substitution of inorganic fertilizers with organic amendments significantly increased total SOC concentration compared to the unfertilized control. Total SOC increased significantly with greater C inputs and did not show any saturation behavior. Increased SOC was primarily stored in the labile fraction with input from organic amendments. However, other less labile SOC fractions showed no further increase with greater C inputs exhibiting C saturation.

Conclusions

While the paddy soil holds a high potential for SOC sequestration, stable C fractions saturate with increasing C inputs, and thus, additional C inputs mainly accumulate in labile soil C pools.  相似文献   

9.
Purpose

In contaminated streams, understanding the role of streambank and streambed source contributions is essential to developing robust remedial solutions. However, identifying relationships can be difficult because of the lack of identifying signatures in source and receptor pools. East Fork Poplar Creek (EFPC) in Oak Ridge, TN, USA received historical industrial releases of mercury that contaminated streambank soils and sediments. Here, we determined relationships between the contaminated streambank soils and sand-sized streambed sediments.

Materials and methods

Field surveys revealed the spatial trends of the concentrations of inorganic total mercury (Hg) and methyl mercury (MeHg), Hg lability as inferred by sequential extraction, particle size distribution, and total organic carbon. Statistical tests were applied to determine relationships between streambank soil and streambed sediment properties.

Results and discussion

Concentrations of Hg in streambank soils in the upper reaches averaged 206 mg kg?1 (all as dry weight) (n?=?457), and 13 mg kg?1 in lower reaches (n?=?321), while sand-sized streambed sediments were approximately 16 mg kg?1 (n?=?57). Two areas of much higher Hg and MeHg concentrations in streambank soils were identified and related to localized higher Hg concentrations in the streambed sediments; however, most of the streambank soils have similar Hg concentrations to the streambed sediments. The molar ratio of Hg to organic carbon, correlation between MeHg and Hg, and particle size distributions suggested similarity between the streambank soils and the fine sand-sized fraction (125–250 μm) collected from the streambed sediments. Mercury in the fine sand-sized streambed sediments, however, was more labile than Hg in the streambank soils, suggesting an in-stream environment that altered the geochemistry of sediment-bound Hg.

Conclusions

This study revealed major source areas of Hg in streambank soils, identified possible depositional locations in streambed sediments, and highlighted potential differences in the stability of Hg bound to streambank soils and sediments. This work will guide future remedial decision making in EFPC and will aid other researchers in identifying source–sink linkages in contaminated fluvial systems.

  相似文献   

10.
ABSTRACT

Studying changes in soil organic carbon (SOC) pools and soil microbial C substrate utilization under plastic mulching in different seasons is of great significance for improving soil fertility and sustainable agricultural development. Based on a 2-year plastic film mulching experiment in northeastern China, we investigated the SOC, labile SOC fractions under three treatments: non-mulching (NM), autumn mulching (AM) and spring mulching (SM). The results showed that SOC decreased with soil depth under the AM and SM treatments compared with the NM treatment. The microbial biomass carbon (MBC) and dissolved organic carbon (DOC) under the AM treatment increased significantly in the 0–10 cm soil layer, by 31.2% and 27.2% (p < 0.05), respectively. The AM treatment significantly increased the utilization of amino acids and carbohydrate C sources. Redundancy analysis (RDA) indicated that MBC was the main factor influencing microbial metabolic functional diversity and accounted for the largest variation in the 0–10 cm layer. Pearson’s correlation analysis illustrated that MBC was strongly correlated with the utilization of the microbial C substrate. We suggest that AM may be an effective and sustainable management practice for improving soil quality and maintaining microbial functional diversity in semi-arid agroecosystems in this area.  相似文献   

11.
Invasion of an exotic C_4 plant Spartina alterniflora has been shown to increase soil organic carbon(SOC) concentrations in native C_3 plant-dominated coastal wetlands of China. However, little is known about the effects of S. alterniflora invasion on SOC concentrations and fractions in tidal marshes dominated by native C_4 plants. In this study, a field experiment was conducted in a tidal marsh dominated by the native C_4 plant Cyperus malaccensis in the Minjiang River estuary, China. Concentrations of SOC and liable SOC fractions, dissolved organic carbon(DOC), microbial biomass carbon(MBC), and easily oxidizable carbon(EOC),were measured in the top 50-cm soils of the C. malaccensis community, as well as those of three S. alterniflora communities with an invasion duration of 0–4 years(SA-4), 4–8 years(SA-8), and 8–12 years(SA-12), respectively. Results showed that both SOC stocks in the 50-cm soils and mean SOC concentrations in the surface soils(0–10 cm) of the C. malaccensis community increased with the duration of S. alterniflora invasion, whereas SOC concentrations in the 10–50-cm soils decreased slightly during the initial period of S. alterniflora invasion, before increasing again. The pattern of changes in labile SOC fractions(DOC, MBC, and EOC) with invasion duration was generally similar to that of SOC, while the ratios of labile SOC fractions to total SOC(DOC:SOC, MBC:SOC, and EOC:SOC) decreased significantly with the duration of S. alterniflora invasion. The findings of this study suggest that invasion of the exotic C_4 plant S. alterniflora into a marsh dominated by the native C_4 plant C. malaccensis would enhance SOC sequestration owing to the greater amount of biomass and lower proportion of labile SOC fractions present in the S. alterniflora communities.  相似文献   

12.
Wang  Ping  Wang  Jidong  Zhang  Hui  Dong  Yue  Zhang  Yongchun 《Journal of Soils and Sediments》2019,19(2):588-598
Purpose

The aim of this paper is to enlighten the role of highly reactive iron (Fe) minerals in soil organic carbon (SOC) preservation in soil aggregates.

Materials and methods

The effects of four long-term (37-year) fertilization regimes (NPK, chemical fertilization; NPKM, chemical fertilization + cattle manure; M, cattle manure; CK, non-fertilization control) on organic carbon (OC) stability, soil iron fractions in bulk soil, and soil aggregates were studied to characterize the capacity and mechanism of Fe minerals to preserve SOM in soil.

Results and discussion

Long-term fertilization significantly altered the Fe fractions in soil and soil aggregates. The two applications with manure (NPKM and M) increased the non-crystalline Fe content, while the chemical fertilizer (NPK) increased the crystalline Fe content. Besides, long-term fertilization with manure greatly increased the content of SOC and soil total nitrogen (STN). The non-crystalline Fe was positively correlated with the SOC content in both soil and soil aggregates. Meanwhile, the long-term fertilization treatments greatly changed the mass distribution and OC content of soil aggregates.

Conclusions

Long-term manure fertilization promoted the formation of non-crystalline Fe fractions, which bounds to SOC to form soil macro-aggregates. Thus, the formation of SOC-Fe association in soil and soil aggregates plays a crucial role in SOC preservation.

  相似文献   

13.
Purpose

The purpose of the study was to determine the levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F), two types of persistent organic pollutant (POP), in an urban retention reservoir located in an industrial zone within a coal-mining region. It also assesses the potential ecological risk of the PCDDs/Fs present in bottom sediments and the relationship between their content and the fraction of organic matter.

Materials and methods

The sediment samples were collected from Rybnik Reservoir, located in the centre of the Rybnik Coal Region, Silesia, one of Poland’s major industrial centres. Seventeen PCDD/F congeners in the surface of the sediments were analysed using high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS).

Results and discussion

The toxic equivalency (TEQ) of the PCDDs/Fs in the sediments ranged from 1.65 to 32.68 pg TEQ g?1. PCDDs constituted 59–78% of the total PCDDs/Fs, while the PCDFs accounted for 22–41%. The pattern of PCDD/F congeners in the sediments was dominated by OCDD. However, the second-most prevalent constituents were OCDF and ∑HpCDFs in the low TOC sediment (< 10 g TOC kg?1), but HpCDD in the rich TOC samples (> 10 g TOC kg?1). PCDD/F concentrations in the sediment samples were 2- to 38-fold higher than the sediment quality guidelines limit, indicating high ecological risk potential. Although a considerable proportion of PCDDs/Fs in the bottom sediments from the Rybnik Reservoir were derived from combustion processes, they were also obtained via transport, wastewater discharge, high-temperature processes and thermal electricity generation. The PCDD/F concentrations were significantly correlated with all fractions of organic matter; however, the strongest correlation coefficients were found between PCDDs/Fs and humic substances. Besides organic matter, the proportions of silt/clay fractions within sediments played an important role in the transport of PCDDs/Fs in bottom sediments.

Conclusions

The silt/clay fraction of the bottom sediments plays a dominant role in the movement of PCDDs/Fs, while the organic matter fraction affects their sorption. The results indicate that the environmental behaviour of PCDDs/Fs is affected by the quantity and quality of organic matter and the texture of sediments.

  相似文献   

14.
A pilot-scale study and field measurements at commercial ponds were conducted to investigate the environmental fate of copper (Cu) applied as an algaecide in commercial catfish ponds. In the pilot study, a total of 774 g Cu(II) was applied to an experimental catfish pond over a period of 16 summer weeks. More than 90% of Cu applied became associated with suspended sediment particles within a few minutes of addition, and then nearly all Cu applied was transferred to the sediment phase within about 2 days. At the end of the study, the peak Cu content in the sediment increased from an initial concentration of 25~35 mg kg?1 to about 200 mg kg?1, and the applied Cu was able to reach a sediment depth of about 16 cm. Meanwhile, Cu concentration in the catfish body decreased from 12.7 ± 2.81 mg kg?1 to 6.15 ± 2.54 mg kg?1. Copper mass balance indicated that virtually all Cu applied was retained in the sediment. Only 0.01% of the total Cu applied was taken up by fish and 0.1% remained in pond water. Data from 3 commercial fishponds of different ages (1–25 years) and with different sediment types (acidic, neutral and calcareous) supported the pilot-scale observation. Both pilot-testing results and field measurements revealed that Cu is predominantly accumulated within the top sediment layer and barely reached the bottom soil regardless of the pond age and the type of the sediments. Field monitoring of groundwater quality suggested that the copper leaching into the groundwater surrounding the ponds was insignificant.  相似文献   

15.
Liu  Jin-e  Shu  Zihao  Zhao  Yan-ping  Deng  Dailan  Zou  Caiyu  Xin  Yue  Zhang  Limin 《Journal of Soils and Sediments》2021,21(10):3438-3450
Purpose

In this study, 1-year decomposition experiments were conducted to measure the litter carbon decomposition dynamics in saltmarsh and to determine the changes in the chemical structure of litter carbon during the litter decomposition process.

Methods

Litterbags containing a mixture of Spartina alterniflora litter and burned sediment were buried at four S. alterniflora saltmarshes and one S. alternifloraSuaeda salsa co-existing saltmarsh. The contents of total organic carbon (TOC) and recalcitrant carbon (RC) were determined by a Sercon Integra CN isotope ratio mass spectrometer, while the content of labile carbon (LC) was estimated by calculation. 13C nuclear magnetic resonance (NMR) spectroscopy was conducted to characterise the chemical structures of the organic carbon compounds in the S. alterniflora litter during decomposition. Solid-state 13C–CPMAS-NMR spectra were obtained using an AVANCE III 400 MHz (Bruker) spectrometer.

Results

The results indicated that more RC than LC remained in the litterbag during decomposition. The organic carbon content of the S. alterniflora litter was largely composed of alcoxyl-C compounds (78.9%), the decomposition products of which dominated the litter organic carbon fractions, including the TOC, RC, and LC. In contrast, alkyl-C, aromatic-C, and carboxyl-C products contributed mostly to RC. Differences in the negative correlations between the litter carbon fractions and alkyl-C, aromatic-C, and carboxyl-C were found among the developing saltmarshes. Humus generated by the S. alterniflora litter was mainly composed of macromolecular organic compounds containing functional groups such as methyl, methylene, methine, methoxyl, aromatic rings, phenolic hydroxyl, and carboxyl.

Conclusions

During decomposition, the organic carbon in the S. alterniflora litter was found to be dominated by O-alkyl-C, followed by aromatic-C, alkyl-C, and carboxyl-C. O-alkyl-C plays a major role in the LC proportion of organic carbon, while aromatic-C, alkyl-C, and carboxyl-C contribute more to the RC proportion. Alkyl-C was found to be more easily decomposed than aromatic-C in the S. alterniflora litter. During litter decomposition, the molecular structure complexity, humification degree, and decomposition degree of organic carbon exhibited seasonal variations. In the 3-year saltmarsh, more decomposition of the organic carbon in the S. alterniflora litter was observed as compared to other sites.

  相似文献   

16.
He  Huan  Xia  Guotong  Yang  Wenjin  Zhu  Yunpeng  Wang  Guodong  Shen  Weibo 《Journal of Soils and Sediments》2019,19(12):3954-3968
Purpose

Wetlands in Mu Us Desert have severely been threatened by grasslandification over the past decades. Therefore, we studied the impacts of grasslandification on soil carbon (C):nitrogen (N):phosphorus (P) stoichiometry, soil organic carbon (SOC) stock, and release in wetland-grassland transitional zone in Mu Us Desert.

Materials and methods

From wetland to grassland, the transition zone was divided into five different successional stages according to plant communities and soil water conditions. At every stage, soil physical and chemical properties were determined and C:N:P ratios were calculated. SOC stock and soil respirations were also determined to assess soil carbon storage and release.

Results and discussion

After grasslandification, SOC contents of top soils (0–10 cm) decreased from 100.2 to 31.79 g kg?1 in June and from 103.7 to 32.5 g kg?1 in October; total nitrogen (TN) contents of top soils (0–10 cm) decreased from 3.65 to 1.85 g kg?1 in June and from 6.43 to 3.36 g kg?1 in October; and total phosphorus (TP) contents of top soils (0–10 cm) decreased from 179.4 to 117.4 mg kg?1 in June and from 368.6 to 227.8 mg kg?1 in October. From stages Typha angustifolia wetland (TAW) to Phalaris arundinacea L. (PAL), in the top soil (0–10 cm), C:N ratios decreased from 32.2 to 16.9 in June and from 19.0 to 11.8 in October; C:P ratios decreased from 1519.2 to 580.5 in June and from 19.0 to 11.8 in October; and N:P ratios decreased from 46.9 to 34.8 in June and changed from 34.9 to 34.0 in October. SOC stock decreased and soil respiration increased with grasslandification. The decrease of SOC, TN, and TP contents was attributed to the reduction of aboveground biomass and mineralization of SOM, and the decrease of soil C:N, C:P, and N:P ratios was mainly attributed to the faster decreasing speeds of SOC than TN and TP. The reduction of aboveground biomass and increased SOC release led by enhanced soil respiration were the main reasons of SOC stock decrease.

Conclusions

Grasslandification led to lowers levels of SOC, TN, TP, and soil C:N, C:P, and N:P ratios. Grasslandification also led to higher SOC loss, and increased soil respiration was the main reason. Since it is difficult to restore grassland to original wetland, efficient practices should be conducted to reduce water drainage from wetland to prevent grasslandification.

  相似文献   

17.
The occurrence of substantial quantities of black carbon (BC) in urban soil due to local dispersal following incomplete combustion of fossil fuel complicates the determination of labile soil organic carbon (SOC). Estimates of SOC content were made from loss on ignition (LOI) analyses undertaken on samples (0–15 cm depth) from comprehensive soil geochemical surveys of three UK urban areas. We randomly selected 10 samples from each decile of the LOI distribution for each of the surveys of Coventry (n = 808), Stoke‐on‐Trent (n = 737) and Glasgow (n = 1382) to investigate the proportions of labile SOC and BC. We determined their total organic carbon (TOC) and BC contents, and by difference the labile SOC content, and investigated the linear relationship of the latter with SOC estimates based on LOI analyses. There was no evidence for a difference in the slope of the regression for the three urban areas. We then used a linear regression of labile SOC based on LOI analyses (r2 = 0.81) to predict labile SOC for all survey samples from the three urban areas. We attribute the significantly higher median BC concentrations in Glasgow (1.77%, compared with 0.46 and 0.59% in Coventry and Stoke‐on‐Trent) to greater dispersal of coal ash across the former. An analysis of the 30 samples showed that LOI at 450 °C accounts for a consistent proportion of BC in each sample (r2 = 0.97). Differences between TOC (combustion at 1050 °C after removal of inorganic carbon) and an LOI estimate of SOC may be a cost‐effective method for estimation of BC. Previous approaches to estimation of urban SOC contents based on half the mean SOC content of the equivalent associations under pasture, underestimate the empirical mean value.  相似文献   

18.
Jia  Shuxian  Liu  Xiaofei  Lin  Weisheng  Zheng  Yong  Li  Jianwei  Hui  Dafeng  Guo  Jianfen 《Journal of Soils and Sediments》2022,22(3):931-941
Purpose

Glomalin-related soil protein (GRSP) is an essential component of soil organic C for maintaining soil quality and structure and plays a critical role in soil carbon (C) sequestration. However, how GRSP changes under nitrogen (N) deposition remains poorly understood.

Materials and methods

We assessed total GRSP (T-GRSP) and easily extractable GRSP (EE-GRSP) under a control (no N input), low N addition (LN, 40 kg N ha?1 year?1), and high N addition (HN, 80 kg N ha?1 year?1) treatments in 2015 and 2016 in a Chinese fir (Cunninghamia lanceolata) plantation in the subtropical China. We also analyzed soil properties contents and explored the stoichiometric ratios of soil organic C (SOC), total N (TN), and total phosphorus (TP) with GRSPs.

Results

Compared to the control, both T-GRSP and EE-GRSP were significantly reduced under the HN treatment, but had no significant difference under the LN treatment. The ratio of T-GRSP and EE-GRSP was reduced by the N addition. Soil organic C (SOC) and dissolved organic C (DOC) were significantly affected by N addition treatments. The ratios of GRSP-C to SOC and of EEGRSP-C to SOC ranged from 6.29 to 16.07% and 1.34 to 3.52%, respectively. T-GRSP and EE-GRSP were positively correlated with SOC/TN ratio, but negatively correlated with soil TN/TP and SOC/TP ratios.

Conclusion

Our results indicated that the GRSP reductions under N deposition in soil are mediated by soil C, N, and P stoichiometry, and particularly, the reduction of EE-GRSP by DOC. This study improved our mechanistic understanding of dynamics of GRSPs under increasing N enrichment in subtropical plantation ecosystems.

  相似文献   

19.
Soil organic carbon (SOC) consists of various classes of organic substances that can be pooled as labile and non-labile fractions. Previous studies have suggested that plant invasion increases SOC content, but whether invasion consistently alters SOC fractions remains unclear. Consequently, the present study was conducted to observe the effects of Praxelis clematidea invasion on SOC fractions in a tropical savanna of southern China. Soil samples were collected in two surface soil layers (0–10 and 10–20 cm) from non-, slightly and severely invaded plots to analyse the total SOC, readily oxidizable SOC (ROC), and non-readily oxidizable SOC (NROC) content. The results showed that severe P. clematidea invasion significantly increased the SOC content by 47% in the surface soil (p < 0.001). The increase in SOC content largely originated from the accumulation of NROC (the non-labile fraction), rather than ROC which typically is regarded as the labile OC fraction. This change may be beneficial to long-term soil C stabilization because chemical recalcitrance is an important pathway to prevent SOC from decomposition. Although the mechanisms for NROC accumulation have not been thoroughly elucidated to date, our results suggest that P. clematidea invasion may facilitate soil C sequestration in this tropical savanna.  相似文献   

20.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号