首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
Soil contamination by heavy metal(loid)s is a considerable environmental concern, and immobilization is a promising way to reduce toxicity. In recent years, modified/engineered biochars have gained enormous attention for their use in soil remediation, and various studies have reported notable results from their application and their ability to immobilize heavy metal(loid)s. In this review, a summary of publications on the utilization of modified biochars is presented to address the heavy metal(l...  相似文献   

2.
Zhang  Zhaoxue  Zhang  Nan  Li  Haipu  Lu  Yi  Wang  Qiang  Yang  Zhaoguang 《Journal of Soils and Sediments》2019,19(12):4042-4051
Purpose

This study aimed to reveal spatial distribution of As, Cd, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn in paddy soils in the Zijiang River basin and to evaluate its pollution status and potential ecological risks, and thus to provide basic information for rational utilization of paddy soils in the study area.

Materials and methods

The heavy metal(loid) concentrations in one hundred and thirty-five paddy soil samples (these samples were collected from the top 0–20 cm layer) were measured by inductively coupled plasma-optical emission spectrometry. The spatial distribution characteristics of the heavy metal(loid)s were depicted by the Ordinary Kriging interpolation analysis. The contamination degree and potential ecological risks of the heavy metal(loid)s in paddy soils were assessed by Nemerow’s comprehensive index, geoaccumulation index, potential ecological risk factor, and potential ecological risk index. The potential sources of the heavy metal(loid)s were deduced by Pearson’s correlation analysis, hierarchical cluster analysis, and principal component analysis.

Results and discussion

The mean concentrations of the heavy metal(loid)s decreased in the order of Mn?>?V?≈?Zn?>?Cr?>?Ni?≈?Pb?>?Cu?≈?Sb?>?As?>?Cd. Except for Cd and Sb, the mean concentrations of As, Cr, Cu, Mn, Ni, Pb, V, and Zn were close to the background reference values. The concentration of Cd in 94.8% of samples exceeded the soil quality standard value (grade II, 5.5?<?pH?<?6.5, GB 15618–1995). According to the assessments of pollution and potential ecological risks for the heavy metal(loid)s, 45.2% and 46.7% of samples were severely polluted and moderately polluted, respectively. The potential sources analysis indicated that Cd, Sb, and Zn mainly originated from agricultural, mining, and smelting activities; As, Cu, and Pb mainly originated from agricultural activities, while coal combustion by-products was another major source of these heavy metal(loid)s in paddy soils near the thermal power plant in the southwest corner of the study area; Cr, V, Mn, and Ni mainly originated from natural source.

Conclusions

Cadmium and Sb are the main contaminants in paddy soils in the study area, and there are hot-spot pollution areas.

  相似文献   

3.
Wu  Yi  Wang  Shengli  Ning  Xiang  Yang  Meng  Liu  Mengbo  Zang  Fei  Nan  Zhongren 《Journal of Soils and Sediments》2021,21(6):2273-2286
Journal of Soils and Sediments - In situ remediation techniques are currently limited for agricultural soil contaminated by heavy metal(loid)s, particularly for alkaline soil. In this study, we...  相似文献   

4.

Purpose

Surface sediments contaminated with high levels of multiple heavy metal(loid) species are very common environmental problems. Especially, the labile and bioaccessible fractions of heavy metal(loid)s in the sediments are posing serious risks to the biota and the overlaying water quality. This study aimed at developing a potential method to manage the activity of the labile fractions of heavy metal(loid)s in surface sediments.

Materials and methods

This study assessed the feasibility of adding iron powder, a low-cost industrial by-product, to sediments containing high levels of Pb, As, and Cd to adsorb labile fractions of heavy metal(loid)s onto the sorbent surfaces and to retrieve the heavy metal(loid) laden powders by applying external magnetic field. In addition, the redistribution of Pb, Cd, and As in different sediment fractions, the dissolved fraction and the sorbent-adsorbed fraction, was also investigated and characterized.

Results and discussion

The results indicate that the bioactive labile fractions (exchangeable and carbonate-bound fractions) of heavy metal(loid)s are prone to concentrating onto iron powders and can be selectively removed from the sediments by magnetic retrieval. In addition, iron addition induces conversion of labile fractions of heavy metal(loid)s into more stabilized fractions.

Conclusions

Overall, the process can effectively minimize the activity of labile fractions of heavy metal(loid)s in surface sediments.
  相似文献   

5.

Purpose

The use of municipal solid wastes (MSWs) as a low-cost source of organic matter for soils should be considered after discarding the environmental risks related to their metal(loid) load. The goal of this work was to assess the employment of a MSW as an organic amendment in two types of soil (an agricultural soil, A, and a metal(loid)-enriched mine tailings soil, T) attending to changes in soil properties and in plant growth, nutrition and metal(loid) translocation from roots to aerial parts of Zea mays L. (stalk, leaves, tassel, husk, cob and kernel).

Materials and methods

After a comprehensive characterisation of each soil treatment (A, A + MSW, T, T + MSW), a pot-designed experiment was carried out. Soil solution was monthly monitored throughout the experiment, and metal(loid) concentrations were measured.

Results and discussion

The MSW improved some fertility-related parameters in both soils, A and T: increased total and dissolved organic carbon, total nitrogen and soil microbiology. However, an increase in 0.01 M CaCl2-extractable metal(loid) concentration was also observed. No differences in dry biomass were found between amended and not amended treatments. A fractionation of metal(loid) concentrations among plant organs occurred. For instance, the highest Cu and Pb concentrations were found in roots, while for Zn occurred in the stalk and the cob. The amended treatments favoured the accumulation of Mn in all plant organs. Kernels showed in general the lowest metal(loid) concentrations.

Conclusions

The addition of municipal solid wastes as organic amendment could be a suitable tool to increase soil fertility. However, due to the high metal(loid) content of this particular MSW, its use on agricultural soils would not be appropriate. By other hand, along with the improvement of soil fertility, the MSW was useful to promote plant development in the mine tailings soil which should be then considered as a potential tool to promote plant establishment in those metal(loid)-impacted soils.
  相似文献   

6.
In this study, biochar produced by pyrolysis of urban pruning wood (Bpw) and sewage sludge (Bss) were characterized and investigated as adsorbents for the removal of Cu(II), Pb(II), Zn(II), and As(V) from contaminated solutions. Both types of biochars showed different physical-chemical properties and metal(loid) content. In Bss, Cu, Zn, and Pb concentrations exceeded the upper limit of the common ranges in soils. However, when they were tested for their effect on soil invertebrates, neither of the biochar was expected to exert negative effects as long as the dose applied as an amendment was ≤?4.8 t ha?1. For an assessment of the effectiveness of biochar in the immobilization of metal(loid)s, three contaminated solutions with acidic pH and different pollutant concentrations were added to both types of biochar. Precipitation as oxy-hydroxides and the formation of complexes with active functional groups of the organic matter were the main mechanisms of metal(loid) fixation by the biochar, with increased precipitation and a rising pH. Both types of biochar were effective at immobilizing Pb and Cu, while Zn showed less effectiveness in this regard and As the least. The high P content of the biochar from sewage sludge favored Pb fixation, presumably forming complexes with phosphates, while competition between phosphate and arsenate ions decreased As adsorption by Fe compounds. The metal(loid)s immobilized by biochar from urban pruning wood were more bioavailable than those fixed by biochar from sewage sludge.  相似文献   

7.
Yuan  Qiusheng  Wang  Peifang  Wang  Chao  Chen  Juan  Wang  Xun  Liu  Sheng 《Journal of Soils and Sediments》2021,21(10):3515-3527
Journal of Soils and Sediments - The construction of large dams submerges riparian soils within reservoirs. However, little is known about the influence of water submergence on metal(loid)...  相似文献   

8.
The elevated presence of metal(loid)s in the environment significantly impacts ecosystems and human health and is generally largely due to industrial and mining activities. Thus, in the current study, we investigated and proposed an environmentally friendly method (phytomanagement) aimed at reducing the negative impacts associated with metal(loid) pollution through the use of soil amendments (biochar and compost) to permit Ailanthus altissima growth on a highly contaminated mining Technosol, with arsenic (As) and lead (Pb) contents of 539.06 and 11 453 mg kg-1, respectively. The objective was to examine the impacts of three biochars and compost on i) the physicochemical characteristics of soil, ii) metal(loid) immobilization in soil, and iii) A. altissima growth. We revealed that the application of biochar as a soil amendment improved soil conditions by increasing soil electrical conductivity, pH, and water-holding capacity. Moreover, concomitantly, we observed a large reduction (99%) in Pb mobility and availability following application of the hardwood biochar in combination with compost (HBCP). Thus, this combined soil amendment was most effective in promoting A. altissima growth. In addition, the HBCP treatment prevented As translocation in the upper parts of plants, although soil pore water As concentration was not diminished by amendment application.  相似文献   

9.

Purpose

The objective of this work was to evaluate the effectiveness of a plant bioassay (Phytotoxkit®) for screening ecotoxicological risks in sediments affected by mining activities.

Materials and methods

A total of 42 sediment samples affected by mining activities were studied, including 39 sediment samples from the Sierra Minera, Spain, an area affected by old extraction procedures, and three sediments from an area affected by opencast mining. These three samples were then mixed with limestone filler at 10, 20 and 30 %, providing nine stabilised samples. The total and soluble metal(loid) content (As, Cd, Cu, Fe, Pb and Zn) was determined in all samples, and the Phytotoxkit® bioassay was applied to determine the ecotoxicological effect of this procedure.

Results and discussion

The stabilised material had a neutral pH and low soluble metal(loid) concentration, similar to that of samples in which a natural attenuation process had taken place because of mixing with surrounding carbonate-rich materials. An ecotoxicological survey identified the low toxicity levels of the stabilised samples.

Conclusions

The applied bioassay is a good tool for screening metal(loid) contamination in areas affected by mining activities, since it provides information on both natural and simulated attenuation processes. The mixing of sediments with limestone filler could be applied to the remediation of zones affected by mining activities, because the toxicological effect on the tested organisms in the stabilised sediments was reduced significantly and the metal(loid) content was diminished.  相似文献   

10.
With the development of the industrial era, environmental pollution by organic and inorganic pollutants increased and became a worldwide issue. Particularly, former industrial sites often present high concentrations of metal(loid)s. These pollutions have adverse effects not only on the environment but also to human health, as pollutants can enter the food chain. Therefore, contaminated sites need rehabilitation. Phytoremediation is a clean and low-cost solution to remediate such sites. However, vegetation establishment can be difficult on such extreme soils from both a physical and a chemical point of view. Consequently, amendments, like biochar and garden soil, must be applied. Biochar, product of biomass pyrolysis under low-oxygen conditions, showed beneficial effects on soil fertility and plant growth, as well as metal(loid) sorption properties. The aims of this study were to investigate the effects of two organic amendments, biochar and garden soil, alone or combined, on the physico-chemical properties of a post-industrial soil and the growth of two Salix species (Salix alba and Salix viminalis) and evaluate the phytostabilizing capacities of the two Salix species. In this goal, a greenhouse experiment was performed, using garden soil at 50% (v/v) and/or biochar at 2 or 5% (w/w). The results showed that biochar did not improve soil physico-chemical properties, neither did it affect plant parameters (dry weight, organ metal(loid)s concentrations). Moreover, higher metal(loid) concentrations were found in the roots compared to the upper parts. Finally, S. alba presented lower metal(loid) concentrations in the aboveground parts compared to S. viminalis, associated with a good growth, which make it a better candidate for phytostabilization of the studied soil.  相似文献   

11.

Purpose

Extensive deposition of Pb, As, and Cs in soils may damage ecosystems and human’s health. Soil washing is the most conventional remediation method, and its efficiency depends on metal solubility in soil. This study aims to optimize operating variables of electro-kinetic field (EKF)-enhanced soil washing procedures.

Materials and methods

Soil samples from a Mississippi River Delta rice field were homogeneously spiked with Pb, As, and Cs, and contaminated soil was aged for 3 months. The remediation involved a first stage electro-kinetic process, followed by a soil washing procedure. Soil pH changes under EKF were studied. Effects of citric acid and reversed EKF were investigated for alleviating possible alkaline precipitation. In the washing procedure, soil washing time and cycles with different extractants were examined. The overall EKF-enhanced soil washing efficiencies were discussed as well.

Results and discussion

The implement of EKF offered an acidic soil environment around the anode areas for solubilizing metal(loid)s. Combined with EKF, citric acid was more conductive to desorb metal(loid)s. In addition, the reversed EKF effectively alleviated metal(loid) precipitation caused by alkalization in the first stage cathode areas. The EKF significantly enhanced metal(loid) extractions in the anode area of soils using Na2EDTA, CaCl2, and citric acid at pH of 2. The most preferable removal of Pb (80–98 %), As (48–63 %), and Cs (10–13 %) was achieved with three extractants. CaCl2 and citric acid were proved to be suitable alternatives to Na2EDTA for Pb extraction. A washing process of 2 h extraction with double washing cycles was optimized.

Conclusions

Soil washing time and cycles were major factors governing the metal(loid) removal from soil. Washing process of 2 h extraction with double cycles was optimized for further extraction based on higher washing efficiency. The EKF effectively improved washing efficiency while some electrical parameters need further studies for cost performance consideration.
  相似文献   

12.
中国耕地土壤重金属污染情况不容乐观,如何安全利用重金属污染耕地仍是当今亟需解决的农业和环保问题。本文综合分析了近几年不同污染程度耕地土壤的安全利用措施,提出重金属低积累作物种植、重金属钝化技术、农艺调控及种植结构调整为当前污染耕地土壤安全利用的主要手段,并指出污染源防控力度不足、土壤污染与作物安全性关系不明、原位钝化技术风险及低积累作物利用效果的局限性仍然是中国污染耕地土壤安全、高效利用面临的主要问题,建议进一步完善污染土壤评价标准、健全污染土壤防控体系、优化污染土壤安全利用技术,以推动重金属污染耕地土壤的安全、高效和可持续利用。  相似文献   

13.

Purpose

Anthropic activities induce severe metal(loid)s contamination of many sites, which is a threat to the environment and to public health. Indeed metal(loid)s cannot be degraded, and thus accumulate in soils. Furthermore, they can contaminate surrounding ecosystems through run-off or wind erosion. This study aims to evaluate the phytostabilization capacity of Salix viminalis to remediate As and Pb highly contaminated mine site, in a biochar-assisted phytoremediation context and to assess biochar particle size and dose application effects.

Materials and methods

To achieve this, mesocosm experiments were conducted using the contaminated technosol and four different size fraction of one biochar as amendment, at two application rates (2 and 5%). Non-rooted cuttings of Salix viminalis were planted in the different mixtures. In order to characterize the mixtures, soil pore waters were sampled at the beginning and at the end of the experiment and analyzed for pH, electrical conductivity, and metal(loid) concentrations. After 46 days of Salix growth, roots, stems, and leaves were harvested and weighed, and As and Pb concentrations and distributions were measured.

Results and discussion

Soil fertility improved (acidity decrease, electrical conductivity increase) following biochar addition, whatever the particle size, and the Pb concentration in soil pore water decreased. Salix viminalis did not grow on the non-amended contaminated soil while the biochar amendment permitted its growth, with a better growth with the finest biochars. The metal(loid)s accumulated preferentially in roots.

Conclusions

Fine biochar particles allowed S. viminalis growth on the contaminated soil, allowing this species to be used for technosol phytostabilization.
  相似文献   

14.
The contamination of hazardous metal(loid) is one of the serious environmental and human health risks. This study isolated a total of 40 cadmium (Cd)- and arsenic (As)-resistant bacterial isolates from coastal sediments by pour plate technique using tryptic soy agar supplemented with Cd or As (50 mg l?1) for use as metal(loid) bioremediation agents. Out of 40, 4 isolates, RCd3, RCd6, RAs7, and RAs10, showed a relatively higher growth rate in Cd- or As-supplemented culture media which were selected for further study. The selected isolates showed a high minimum inhibitory concentration (60–400 mg l?1 for Cd and 400–2200 mg l?1 for As), which demonstrated their remarkable Cd and As resistance capabilities. The metal(loid) removal efficiencies (0.032–0.268 μg Cd h?1 mg?1 and 0.0003–0.0172 μg As h?1 mg?1 [wet weight cell]) of selected isolates indicated their greater magnitude in absorbing Cd compared to As from water. Phylogenetic analysis of the 16S rDNA sequences revealed that isolates RCd3, RCd6, RAs7, and RAs10 were closely related to Acinetobacter brisouii, Pseudomonas abietaniphila, Exiguobacterium aestuarii, and Planococcus rifietoensis, respectively. Because of high Cd and As resistance and removal efficiency, the selected isolates can survive in a high metal(loid)-contaminated environment and could be a potential tool for bioremediation of high metal(loid)-contaminated effluents to protect the aquatic environment.  相似文献   

15.
The remediation of metal(loid) polluted soil using plants (i.e. phytoremediation) often requires the application of amendments, as well as chemical fertilizer. However, such fertilizers can have negative effects when applied alone and can thus be applied together with other organic amendments to diminish this negative effect. Finally, plants to be used in phytoremediation should be selected based on their adaptive capacity and tolerance to poor and highly contaminated soils, characteristics that possesses Ailanthus altissima. The objective of this study was to evaluate the effects of osmocote fertilization on the amended mining technosol properties and plant growth parameters, as well as to study the accumulation pattern of As and Pb in plant roots. Results showed that osmocote ameliorated soil conditions, but increased Pb mobility. It also greatly improved plant growth. Finally, different behaviours of metal(loid) accumulation were observed in the roots: As was absorbed mainly in the roots because of its similarity with P, with very low amounts in the leaves, whereas Pb was adsorbed mainly on the root surface, with lesser proportion absorbed inside the root system.  相似文献   

16.
ABSTRACT

Today, soil metal pollution has become a significant environmental issue of great public concern. This is because soil is both a major sink for heavy metal(loid)s (HMs) released into the environment, by both pedogenic and anthropogenic activities; and also a major source of food chain contamination mainly through plant uptake and animal transfer. In addition, HM contamination of soil leads to negative impacts on soil characteristics and function by disturbing both soil biological and physiochemical properties (e.g. extreme soil pH, poor soil structure and soil fertility and lack of soil microbial activity). This eventually leads to decreased crop production. Various soil remediation techniques have been successfully employed to reduce the risks associated with HMs efflux into soil. Among these, the use of low-cost and environmentally safe inorganic and organic amendments for the in-situ immobilization of HMs has become increasingly popular. Immobilization agents have successfully reduced the availability of metal ions through a variety of adsorption, complexation, precipitation, and redox reactions. Soil amendments can also be a source of nutrients and thus can also act as a soil conditioner, improving the soil’s physiochemical properties and fertility, resulting in enhanced plant establishment in metal contaminated soils. This article critically reviews the use of immobilizing agents in HM contaminated agricultural and mining soils paying particular attention to metal immobilization chemistry and the effects of soil amendments on common soil quality parameters.  相似文献   

17.

Purpose

Manchester is often heralded as the first industrial city. Large volumes of physical and liquid contaminants were released into its river network throughout the industrial period up to the latter part of the twentieth century. Water quality has improved dramatically in recent decades, but, given their environmental significance, it is important to ascertain the extent to which a legacy of contamination persists in the modern bed sediments.

Materials and methods

Fine-grained bed sediments were sampled at 40 sites in the Mersey and Irwell catchments. Sediments were wet sieved to isolate the <63-μm grain size fraction. Metal concentrations were determined using XRF. Particle size characteristics were also measured. Sediments were subjected to a five-step sequential extraction procedure to ascertain the environmental significance of metal concentrations. Alongside archival research of past industry, enrichment factors, multivariate statistical techniques and conditional inferences trees were used to identify sources of heavy metals.

Results and discussion

Bed sediment-associated heavy metal(loid) concentrations were as follows: As (9.89–110 mg kg?1), Cr (76.5–413 mg kg?1), Cu (53.1–383 mg kg?1), Pb (80.4–442 mg kg?1) and Zn (282–1020 mg kg?1). Enrichment factors ranged from moderate to extremely severe, with Pb showing the greatest enrichment across the catchments. Chemical mobility was generally low, but metal(loid) partitioning identified the influence of anthropogenic sources. Statistical analysis highlighted a number of point sources associated with former industrial sites that operated during the industrial period. Conditional inference trees highlighted the role of the textile industry on Cu concentrations in addition to indicating the complexity of sources, fluxes and stores of sediment-associated contamination throughout the system.

Conclusions

Fine-grained sediment-associated metal(loid)s in the Mersey and Irwell catchments are anthropogenically enriched. Concentrations also exceed sediment quality guidelines. A lack of distinct spatial patterning points to a complex network of contaminant inputs across the catchments, even in the headwaters. Whilst potential modern urban sources are likely to be important, spatial patterns and multivariate/data mining techniques also highlighted the importance of releases from former industrial sites as well as the reworking of historically contaminated floodplains and soils.
  相似文献   

18.
中南某锑矿及其周边农田土壤与植物重金属污染研究   总被引:1,自引:0,他引:1  
袁程  张红振  池婷  於方  宋静  吴龙华 《土壤》2015,47(5):960-964
以南方某锑(Sb)矿区周边土壤与植物为研究对象,采集土壤与植物样品,测定其Sb、As、Cd、Zn、Pb浓度,研究土壤和植物中重金属的污染程度及富集特征。结果表明,矿区周边土壤受Sb污染严重,各采样点全量Sb为3.08~219 mg/kg,平均54.0 mg/kg,同时伴有As、Cd、Zn和Pb污染,其中Cd污染相对严重;但土壤中Sb与土壤As、Cd、Zn和Pb没有相关性,土壤As、Cd、Zn和Pb之间呈极显著的线性相关。矿区周边植物同样受到严重的Sb、As、Cd和Pb的污染,蔬菜可食部分Sb最高达2.05 mg/kg,存在较高的人体摄入风险,且蔬菜中As和Pb超标严重。所采集植物中水麻对Sb有较强的积累和转移能力,是修复Sb污染土壤的潜在植物资源。  相似文献   

19.
Trace element-contaminated soils (TECSs) are one of the consequences of the past industrial development worldwide.Excessive exposure to trace elements (TEs) represents a permanent threat to ecosystems and humans worldwide owing to the capacity of metal(loid)s to cross the cell membranes of living organisms and of human epithelia,and their interference with cell metabolism.Quantification of TE bioavailability in soils is complicated due to the polyphasic and reactive nature of soil constituents.To unravel critical factors controlling soil TE bioavailability and to quantify the ecological toxicity of TECSs,TEs are pivotal for evaluating excessive exposure or deficiencies and controlling the ecological risks.While current knowledge on TE bioavailability and related cumulative consequences is growing,the lack of an integrated use of this concept still hinders its utilization for a more holistic view of ecosystem vulnerability and risks for human health.Bioavailability is not generally included in models for decision making in the appraisal of TECS remediation options.In this review we describe the methods for determining the TE bioavailability and technological developments,gaps in current knowledge,and research needed to better understand how TE bioavailability can be controlled by sustainable TECS management altering key chemical properties,which would allow policy decisions for environmental protection and risk management.  相似文献   

20.
This work investigates the ability of ericoid mycorrhizal (ErM) and ectomycorrhizal (EcM) fungi to solubilize different toxic metal (Cd, Cu, Pb, Zn)-containing minerals. Minerals were incorporated into solidified agar media and solubilization assessed by measuring clearing of the agar after fungal growth. Measurement of radial growth and biomass dry weight provided indications of metal tolerance: accumulated metal in the biomass was measured by atomic absorption spectrophotometry. Metal tolerance and solubilizing ability varied widely between different mineral and fungal species, and strains derived from sites of differing degrees of metal pollution. Zinc phosphate exhibited the least toxicity and was the easiest to solubilize by the majority of tested fungal isolates. Solubilization of toxic metal minerals was connected with both the pH of the medium and growth and tolerance of fungi and it seems that acidification of the medium was the main mechanism of mineral dissolution for most of the mycorrhizal fungi studied. A very strong lethal effect was observed for ectomycorrhizal isolates (>60% of strains) in the presence of Pb phosphate, carbonate, sulphide and tetraoxide. In contrast, ericoid mycorrhizal isolates were able to grow on Pb-mineral-amended media. A significant proportion of ericoid mycorrhizal cultures (70-90%) solubilized Cd and Cu phosphates and cuprite. None of the ericoid mycorrhizal and ectomycorrhizal fungi were able to produce a clear zone in Pb mineral-containing agar. However, many fungi were able to accumulate mobilized Pb in their mycelia. Differences in toxic metal mineral tolerance, mineral solubilization and metal uptake between populations isolated from metal-polluted and uncontaminated sites were related to the toxic metal which was the main pollutant in the original contaminated environment. In general, metal-tolerant fungi grew and solubilized toxic metal minerals better than non-tolerant isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号