首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study sought to contribute to the understanding of soil redistribution by tillage on terraces and the extent and causes of within-field variation in soil properties by examining the spatial distributions of soil redistribution rates, derived using caesium-137, and of total nitrogen and total phosphorus concentrations, within a ribbon and a shoulder terrace in a yuan area of the Loess Plateau of China. Additional water erosion rate data were obtained for nine other terraces. Water erosion rates on the ribbon terraces were low (<1 kg m−2 yr−1), unless slope tangents exceeded 0·1. However, despite the use of animal traction, high rates of tillage erosion were observed (mean 5·5 kg m−2 yr−1). Soil nitrogen concentrations were related to rates of soil redistribution by tillage on the ribbon terrace examined in detail. In general, higher rates of water erosion (0·5–2·9 kg m−2 yr−1) and lower rates of tillage erosion (mean 1·4 kg m−2 yr−1) were evident on the longer shoulder terraces. On the shoulder terrace examined in detail, soil phosphorus concentrations were related to net rates of soil redistribution. A statistically significant regression relationship between water erosion rates and the USLE length and slope factor was used in conjunction with the simulation of tillage erosion rates to evaluate a range of terrace designs. It is suggested that off-site impacts of erosion could be further reduced by ensuring that the slope tangents are kept below 0·06 and lengths below 30 m, especially on the shoulder terraces. Tillage erosion and the systematic redistribution of soil nutrients could be reduced by modification of the contour-cultivation technique to turn soil in opposing directions in alternate years. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The magnitude of interrill and rill erosion was determined on the northern slopes of the Uluguru Mountains, Tanzania which is representative for larger areas of East African Arch Mountains, where population pressure is high and land degradation is severe. The aim of the study was to develop a database to support soil conservation in the area. The study was done on two distinct geomorphic units with respect to altitude and hence rainfall distribution pattern: mountain ridges with an altitude ranging from 1000 to 1500 masl and mean annual rainfall of 2300 mm and mountain foothills whose altitude and mean annual rainfall are 550 to 900 masl and 900 mm, respectively. Total soil loss was measured on 36 individual bounded plots measuring 1.2 m × 20 m using Gerlarch troughs on each day with rain from July 2000 to June 2001. The plots were located on six different geopedologic units, nine on mountain ridges and the rest on the mountain foothills. The slope gradient on the terrain ranged from 30% to 70%. The plots were put under maize cultivation as the main crop. Soil loss through rill erosion was estimated by volumetric measurements of rills on each soil erosion plot. The soil loss due to interrill erosion was obtained by subtracting soil loss through rill erosion from the total soil loss measured in the Gerlarch troughs. The results indicate that soil loss due to both interrill and rill erosion was very high with mean soil loss of 69 and 163 t/ha/year, respectively. Rill erosion accounted for about 58% of the total soil loss while interrill erosion contributed to the remaining 42%. Both interrill and rill erosion were higher in the mountain ridges with mean soil loss of 88 t/ha/year and 210 t/ha/year compared to 49 and 116 t/ha/year in the mountain foothills, respectively. Rill erosion was significantly higher (P ≤ 0.001) in all geopedologic units with slope gradient above 40% (mean soil loss ranged between 91 and 258 t/ha/year) compared to interrill erosion with mean soil loss varying from 41 to 115 t/ha/year. In geopedologic units with slope gradient above 60% both interrill and rill erosion were highly active while in geopedologic units with slope gradient below 40% the two processes were less active. The results demonstrate that rill erosion is more important than interrill erosion in the study area particularly where the slope gradient exceeds 40%. The results further show that the major part of the studied area has moderate interrill erosion (10–50 t/ha/year) and severe to very severe (> 100 t/ha/year) rill erosion. This study clarifies the magnitude of interrill and rill erosion which is important for designing soil conservation on agricultural fields.  相似文献   

3.
降雨侵蚀因子和植被类型及覆盖度对坡耕地土壤侵蚀的影响   总被引:13,自引:4,他引:13  
为探讨降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,2006-2010年采用坡面径流小区观测法研究了天然降雨条件下降雨侵蚀因子、植被覆盖度、植被类型对坡耕地地表径流量、土壤侵蚀量的影响。设5°和10°两个坡度水平,以甘薯和谷子为供试作物,2006-2007年对照区为天然荒草地,2008-2010年为裸坡地。结果表明,甘薯地径流量和侵蚀量与降雨量(R)、最大30 min雨强(I_(30))、R×I(平均雨强)、R×I_(30)正相关显著(P0.05);裸坡地径流量与R、R×I_(30)正相关显著(P0.05),侵蚀量与I_(30)、R×I_(30)正相关显著(P0.05),与降雨量相关不显著(P0.05)。甘薯地和裸坡地的径流量和侵蚀量与平均降雨强度正相关均不显著(P0.05)。回归分析表明,降雨量主要影响径流量,最大30 min雨强主要影响侵蚀量。中、高雨强下,侵蚀量与径流量显著正相关(P0.01)。甘薯地径流量和侵蚀量与植被覆盖度呈显著负指数关系(P0.05)。5°坡耕地,不同植被类型侵蚀量为甘薯地荒草地谷子地;10°坡耕地,荒草地侵蚀量总体最少。多元回归分析表明,对土壤侵蚀的影响为地表径流降雨侵蚀力(R×I_(30))植被覆盖度。通过连续5 a坡面径流小区观测,初步探明降雨和植被对辽西褐土区农耕坡地土壤侵蚀的影响,可为该区坡耕地土壤侵蚀的有效防治提供一定的理论依据和技术支撑。  相似文献   

4.
片蚀与细沟间侵蚀过程中地表微地形的变化   总被引:7,自引:0,他引:7  
采用室内人工模拟降雨和地统计分析相结合的方法,对4种人为管理措施地表微地形在片蚀和细沟间侵蚀过程中的变化特征进行了研究。结果表明,不同雨强下,各管理措施坡面地表微地形表现出了一定程度的不规则性。不同雨强和管理措施条件下,各等级的高程在片蚀阶段和细沟间侵蚀阶段都发生了相互转移;其中第Ⅰ级和第Ⅱ级转移出最多,且在细沟间侵蚀阶段后也只有很少部分转移至第Ⅰ级、第Ⅱ级;第Ⅲ级地表高程转移最少,且有大部分的其他等级的高程转入第Ⅲ级,这两个侵蚀阶段在0~0.01 m和0.01~0.03 m区域最易发生土壤堆积。  相似文献   

5.
The rate of bank erosion by the Zambezi River downstream of Lake Kariba is discussed. Probable reasons for the apparently excessive rate of erosion in parts of the bank are the out-of-season flooding, sudden changes in water level due to operations at Lake Kariba, the silt-free water leaving Lake Kariba and the occurrence of large areas of sandy alluvial soils. Over a distance of about 40 km, about 1030 ha were lost to erosion between 1954 and 1973, whilst 210 ha were redeposited in the form of semi-permanent sandbanks.  相似文献   

6.
This short notice deals with the effect of highly intensive rainstorms (more than 25 mm/h or 8 mm/10 min.) on bare surfaces, producing cones and needles of earth up to 12 cm in cryptogamic surface layers of Canyonlands National Park by splash erosion, and widespread stone stripes resembling periglacial features on the steeper slopes (up to more than 40°) by rainwash in the areas of Red Canyon and Bryce Canyon National Park. A large amount of coarse material can be moved within a very short time, and the surface patterns survive at least for several months.  相似文献   

7.
Gully erosion: Impacts, factors and control   总被引:21,自引:1,他引:21  
C. Valentin  J. Poesen  Yong Li 《CATENA》2005,63(2-3):132
Gully erosion attracts increasing attention from scientists as reflected by two recent international meetings [Poesen and Valentin (Eds.), Catena 50 (2–4), 87–564; Li et al., 2004. Gully Erosion Under Global Change. Sichuan Science Technology Press, Chengu, China, 354 pp.]. This growing interest is associated with the increasing concern over off-site impacts caused by soil erosion at larger spatial scales than the cultivated plots. The objective of this paper is to review recent studies on impacts, factors and control of gully erosion and update the review on ‘gully erosion and environmental change: importance and research needs’ [Poesen et al., 2003. Catena 50 (2–4), 91–134.]. For the farmers, the development of gullies leads to a loss of crop yields and available land as well as an increase of workload (i.e. labour necessary to cultivate the land). Gullies can also change the mosaic patterns between fallow and cultivated fields, enhancing hillslope erosion in a feedback loop. In addition, gullies tend to enhance drainage and accelerate aridification processes in the semi-arid zones. Fingerprinting the origin of sediments within catchments to determine the relative contributions of potential sediment sources has become essential to identify sources of potential pollution and to develop management strategies to combat soil erosion. In this respect, tracers such as carbon, nitrogen, the nuclear bomb-derived radionuclide 137 Cs, magnetics and the strontium isotopic ratio are increasingly used to fingerprint sediment. Recent studies conducted in Australia, China, Ethiopia and USA showed that the major part of the sediment in reservoirs might have come from gully erosion.Gullies not only occur in marly badlands and mountainous or hilly regions but also more globally in soils subjected to soil crusting such as loess (European belt, Chinese Loess Plateau, North America) and sandy soils (Sahelian zone, north-east Thailand) or in soils prone to piping and tunnelling such as dispersive soils. Most of the time, the gullying processes are triggered by inappropriate cultivation and irrigation systems, overgrazing, log haulage tracks, road building and urbanization. As exemplified by recent examples from all over the world, land use change is expected to have a greater impact on gully erosion than climate change. Yet, reconstructions of historical causes of gully erosion, using high-resolution stratigraphy, archaeological dating of pottery and 14C dating of wood and charcoal, show that the main gully erosion periods identified in Europe correspond to a combination not only of deforestation and overuse of the land but also to periods with high frequency of extreme rainfall events.Many techniques have proved to be effective for gully prevention and control, including vegetation cover, zero or reduced tillage, stone bunds, exclosures, terracing and check dams. However, these techniques are rarely adopted by farmers in the long run and at a larger spatial scale because their introduction is rarely associated with a rapid benefit for the farmers in terms of an increase in land or labour productivity and is often contingent upon incentives.  相似文献   

8.
Land use, rainfall and erosion risk on the South Downs   总被引:1,自引:0,他引:1  
Abstract. In 1989–90 over 80% of the erosion on agricultural land in the South Downs was on ploughed or cultivated surfaces prepared for spring planting of cereals. This was in contrast to the pattern in previous years when most erosion was in winter cereal fields. An unusual late winter rainfall peak was the primary cause. Periods of erosion risk associated with other land uses on the South Downs are also discussed.  相似文献   

9.
Summary Started from the basic principles of IBP and MAB programmes, genetic resources of agricultural plant species cultivated traditionally in Transylvania have been studied. Land-races from this territory deserve special attention, as Transylvania is situated on the north-eastern border of the Mediterranian centre of diversity, between Near-East and Western Europe, has a relatively isolated position surrounded by the eastern range of the Carpathian Mountains. Traditional agriculture practiced in many of the intramountain hollows is favourable for the preservation of ancient land races and the territory is also promising in respect of spontaneous germplasm resources. In the Agrobotanical Garden of the Institute of Agronomy at Cluj-Napoca seed samples of economically important plant species — cultivated land-races and wild relatives — have been collected with the beginning of 1970. Based on this collection the threatened variability of agricultural plant species have been grouped in four major categories. Trends and peculiarities of genetic erosion acting in these groups have been exemplified with the cases ofTrifolium pratense L.,Phaseolus vulgaris L. andTriticum monococcum L.
Probleme der Generosion in Transylvanien, Rumänien
Zusammenfassung Ausgehend von den Grundprinzipien des IBP und MAB-Programms wurden die genetischen Ressourcen landwirtschaftlicher Pflanzenarten, die traditionell in Transylvanien angebaut werden untersucht. Landsorten aus dieser Gegend verdienen besondere Beachtung, da Transylvanien an der nordöstlichen Grenze des mediterranen Genzentrums zwischen nahem Osten und Westeuropa liegt und eine relativ isolierte Lage, umgeben von der Ostkette der Karpaten besitzt. Traditioneller Ackerbau, in vielen Gebirgsgegenden noch praktiziert, begünstigt die Erhaltung einstiger Landsorten und das Gebiet ist vielversprechend in Bezug auf das Vorkommen genetischer Ressourcen. Im Agrobotanischen Garten des Instituts für Ackerbau in Cluj-Napoca werden Samenproben von ökonomisch bedeutenden Pflanzenarten, Landsorten und verwandte Wildarten, beginnend seit 1970 gesammelt. Auf dieser Sammlung aufbauend wurden die in Bezug auf ihre Variabilität gefährdeten landwirtschaftlichen Pflanzenarten in Vier Hauptgruppen eingeteilt. Entwicklung und Besonderheiten der Generosion, die sich in diesen Gruppen vollzieht, werden am Beispiel vonTrifolium pratense L.,Phaseolus vulgaris L. undTriticum monococcum L. dargestellt.

(. . )
« », , . , o , , . , , ë , . () 1970 . , , . , , , . , , Trifolium pratense L.,Phaseolus vulgaris L. Triticum monococcum L.
  相似文献   

10.
K.J. Virgo  R.N. Munro 《Geoderma》1978,20(2):131-157
The results of reconnaissance soil surveys covering 6,000 km2 are used to describe the Central Plateau region, which lies at elevations of 2,000 to 2,800 m in northern Ethiopia. Landform and soil sequences on calcareous shales, dolerites and sandstones are described, in which the principal soil units are Lithosols, Luvisols, Cambisols, Arenosols and Vertisols. Detailed morphological and analytical data are presented for a profile representative of arable soils in each sequence.Small-scale subsistence cultivation of cereals is the dominant land use; all land which is physically cultivable is at present cultivated. Settlement patterns are closely related to soil type, nucleated settlement occurring on fine textured soils but dispersed settlement on coarser textured and more freely draining soils.Erosion and soil moisture features of the three landforms described were investigated and compared. Empirical methods and suspended sediment measurements indicate high rates of regional soil loss (17–33 t ha?1 yr?1), accounted for by seasonally high rates of rainfall erosivity, steep terrain and poor land use. The recent development of gully erosion is seen to be linked to the disintegration of waterfall tufas. Application of the universal soil loss equation to arable lands indicates potential annual soil losses in the range of 400 t ha?1 on Vertisols to 200 t ha?1 on Cambisols: differences in rates are ascribed principally to differences in crop planting dates, which affect the degree of vegetative protection during periods of high rainfall erosivity.Soil moisture is shown to be in the available range for less than three months in the year. The time at which moisture in the profile enters the available range differed between the three soils monitored and was found to be closely related to the crop planting date, thus indirectly affecting the erosion hazard.  相似文献   

11.
Land degradation due to soil erosion is the major problem facing Ethiopia today. In the Lake Alemaya catchment soil erosion is caused by the intense rainfall, steep topography, and poor vegetation cover coupled with cultivation of steep lands, and inadequate conservation practices. Sediment from the catchment has affected the storage capacity of Lake Alemaya. This study has integrated the Agricultural Non‐point Source Pollution Model (AGNPS) and the technique of the Gographic Information System (GIS) to quantify soil erosion in the Lake Alemaya catchment. After application of the AGNPS, it appears that 66 per cent of the catchment has a soil erosion rate of 10 to more than 80 t ha−1 y−1. The annual soil loss is estimated at 31 t ha−1, which is more than the permissible value of 1–16 t ha−1 for different agro‐ecological zones of Ethiopia. The sediment yield of the catchment is about 10 148 ton with a delivery ratio of 6·82 per cent. Therefore, an effective management plan is needed for the conservation and rehabilitation of the catchment and to maintain the storage capacity of Lake Alemaya. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
13.
水蚀模型USLE与WEPP在紫色土水蚀预测中的应用对比研究   总被引:9,自引:0,他引:9  
该文分别确定了USLE与WEPP模型的参数指标,通过实测遂宁组紫色土的单次降雨产沙量,对降雨产沙实测值与模型预测值进行比较分析,结果表明:在20°休闲小区模拟预测WEPP模型预测效果多数情况下优于USLE模型;通过多因子贡献分析发现,降雨量因子对产沙量的影响最大,其对休闲区和布设措施小区产沙量的贡献率分别达到了48.0%和64.1%。根据统计学中累积贡献率大于80%确定公共因子的原则,确定降雨量与降雨历时为遂宁组紫色土地区侵蚀产沙量的公共因子。  相似文献   

14.
15.
A tillage erosion model was developed for southwestern Ontario based on the relationship between tillage translocation and slope gradient and slope curvature. Two studies of tillage translocation and tillage erosion were used to calibrate this model, one a comparison of upslope and downslope tillage translocation on shoulder slopes, the other an examination of tillage translocation throughout topographically complex landscapes. Two field sites were used for validation of the model. For both sites, past tillage practices were known and past soil erosion was determined using 137Cs as an indicator of soil redistribution. The model accurately predicted the pattern of soil redistribution that had occurred within the two field sites. Severe soil loss was observed and predicted on convex landscape positions and soil accumulation was observed and predicted on concave landscape positions. The model accounted for almost all of the soil lost from the convex upper slope positions where tillage erosion was expected to be the dominant erosion process. There was considerable soil loss and accumulation elsewhere in the landscapes which could not be accounted for by the model and was presumed to be primarily the result of water erosion. It was concluded that tillage erosion must be incorporated into soil erosion modelling for the purposes of soil conservation.  相似文献   

16.
《Biological conservation》1986,35(4):377-387
The Essex coastline has a total of about 5000 ha of saltmarsh, of which Dengie Peninsula is the largest single marsh forming a part of a Grade 1 SSSI of international importance. Previous work and casual observations have suggested a loss of saltmarsh in this area. This study was undertaken to quantify this change by comparing aerial photographs taken over a 21-year period. The results showed heavy losses, amounting to approximately 10% of the area, although small areas of accretion of saltmarsh were noted. The information is discussed in terms of present remedial work and the need for further preventative measures.  相似文献   

17.
Soil compaction is a problem in many Pacific Northwest fields. We hypothesized that zone subsoiling would improve potato (Solanum tuberosum L., cv. ‘Russet Burbank’) yield or grade, increase infiltration, and decrease bulk density, runoff, and erosion of furrow-irrigated fields, while maintaining trafficability and irrigability of furrows. A 2 year study was established on a Portneuf silt loam (coarse-silty, mixed, mesic Durixerollic Calciorthids). In the fall, plots were in wheat stubble (1988) or bean stover (1989), and were either disked (10–12 cm), chiselled (25–30 cm), or moldboard plowed (20–25 cm). Fall tillages were split in spring, half of each plot receiving in-row zone subsoiling (46 cm) after planting potatoes. The effect of zone subsoiling on infiltration in 1989 was small because of variation across fall tillages. In 1990, zone subsoiling increased infiltration by 10% across fall tillages. Erosion decreased up to 278% with zone subsoiling. Zone subsoiling reduced erosion more effectively than it increased infiltration, shown by a two- to three-fold decrease in the sediment loss to water infiltrated ratio. Zone subsoiling increased infiltration and reduced erosion more in 1990 when the study was conducted on a slightly steeper slope with higher water application rates than in 1989. In 1989, zone subsoiling increased the yield of grade 1 tubers by 3.8 t ha−1 (4.6%), but the total yield was not significantly increased. In 1990, zone subsoiling increased the total yield by 4.2 t ha−1, and the yield of grade 1 tubers by 5.6 t ha−1 (7.7%). With zone subsoiling, the percentage of large grade 1 market-grade tubers increased by 3.3% in 1989 and 5.7% in 1990. Zone subsoiling requires some extra attention by the irrigator early in the season to insure uniform furrow irrigation, but it can potentially conserve both soil and water while improving grade and yield.  相似文献   

18.
This paper reports on a field study conducted in Kilie catchment, East Shoa Zone, Ethiopia to assess the rate of soil erosion by employing a soil loss prediction model (Universal Soil Loss Equation) integrated with in remote sensing and geographical information systems (RS/GIS), environment and gully measurement techniques. The final soil erosion risk map was produced after multiplication of the six factors involved in the USLE and RS/GIS. Gully measurement showed that the erosion rate is higher for the upland areas than the lowlands due to inappropriate soil and water conservation measures, free grazing by animals and conversion of hillside areas into farmlands. About 97·04 per cent of the study catchment falls within a range of 0–10 t ha−1 yr−1 sheet/rill erosion rate. We found that 2·17 per cent of the study area in the uplands has a soil erosion rate falling between 10 and 20 t ha−1 yr−1. About 0·8 per cent of the study area in the uplands is hit by severe sheet/rill erosion rate within the range of 20–60 t ha−1 yr−1. Gully erosion extent in the study area was evaluated through gully measurement and quantification methods. Gully density of 67 m ha−1 was recorded in the catchment. The gully to plot area ratio was found to be 0·14 on average. Hence, in the upland areas, sustainable land management practices are required in order to reduce the rate of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Only recently have erosion models begun to be used in research work in Cuba, specifically the USLE and the thematic cartography of factors in a GIS framework without using a specific model. It therefore becomes necessary to include simulation models for karst regions that make possible an integral assessment of the specific types of soil erosion in those environments and take into consideration the effects of climate change in soil management systems. Morphometric analysis of karst doline absorption forms in regions of La Habana Province in 1986, 1997, and 2009 allowed the characterisation and application of the Morgan Morgan Finney (MMF) conceptual empirical erosion model in the Country for the first time. The results showed previously unreported losses of 12·3–13·7 t of soil ha −1 y−1, which surpasses the permissible erosion threshold. Furthermore, it clearly shows the unsustainable trend of Red Ferralitic and Ferrasol Rhodic (World Reference Base) soils use. The model applied considered the effects of extreme rainfall events associated with climate change in recent years. The results found have led to strategies for coping with future climate change in each scenario and have made it possible to evaluate the consequences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Mapping and assessment of erosion risk is an important tool for planning of natural resources management, allowing researchers to modify land-use properly and implement management strategies more sustainable in the long-term. The Grande River Basin (GRB), located in Minas Gerais State, is one of the Planning Units for Management of Water Resources (UPGRH) and is divided into seven smaller units of UPGRH. GD1 is one of them that is essential for the future development of Minas Gerais State due to its high water yield capacity and potential for electric energy production. The objective of this study is to apply the Universal Soil Loss Equation (USLE) with GIS PCRaster in order to estimate potential soil loss from the Grande River Basin upstream from the Itutinga/Camargos Hydroelectric Plant Reservoir (GD1), allowing identification of the susceptible areas to water erosion and estimate of the sediment delivery ratio for the adoption of land management so that further soil loss can be minimized. For the USLE model, the following factors were used: rainfall–runoff erosivity (R), erodibility (K), topographic (LS), cover-management (C) and support practice (P). The Fournier Index was applied to estimate R for the basin using six pluviometric stations. Maps of the K, C, LS and P factors were derived from the digital elevation model (DEM), and soil and land-use maps, taking into account information available in the literature. In order to validate the simulation process, Sediment Delivery Ratio (SDR) was estimated, which is based on transported sediment (TS) to basin outlet and mean soil loss in the basin (MSL). The SDR calculation included data (total solids in the water and respective discharge) between 1996 and 2003 which were measured at a gauging station located on the Grande River and a daily flow data set was obtained from the Brazilian National Water Agency (ANA). It was possible to validate the erosion process based on the USLE and SDR application for the basin conditions, since absolute errors of estimate were low. The major area of the basin (about 53%) had an average annual soil loss of less than 5 t ha− 1 yr− 1. With the results obtained we were able to conclude that 49% of the overall basin presently has soil loss greater than the tolerable rate, thus indicating that there are zones where the erosion process is critical, meaning that both management and land-use have not been used appropriately in these areas of the basin. The methodology applied showed acceptable precision and allowed identification of the most susceptible areas to water erosion, constituting an important predictive tool for soil and environmental management in this region, which is highly relevant for prediction of varying development scenarios for Minas Gerais State due to its hydroelectric energy potential. This approach can be applied to other areas for simple, reliable identification of critical areas of soil erosion in watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号