首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The objective of this laboratory study with six loess soils (three Eutric CambisoIs and three Haplic Phaeozems) incubated under flooded conditions was to examine the effect of a wide range of NO doses under anaerobic conditions on soil redox potential and N2O emission or absorption. Due to the fact that loess soils are usually well‐drained and are expected to be absorbers during prevailing part of the season, the study aimed at determination of the conditions decisive for the transition from emission to absorption process. On the basis of the response to soil nitrate level, the two groups of soils were distinguished with high and low denitrification capacity. The soil denitrification activity showed Michaelis‐Menten kinetics with respect to soil nitrate content with KM in the range 50–100 mg NO ‐N kg–1. Percentage of nitrates converted to N2O increased linearly with nitrate concentration in the range from 25 to 100 mg NO ‐N kg–1 up to 43% and decreased linearly at higher concentrations reaching practically zero at concentrations about 600 mg NO ‐N kg–1. No denitrification was observed below 25 mg NO ‐N kg–1. Nitrous oxide absorption in soil occurred only at nitrate concentrations to 100 mg NO ‐N kg–1 and in this concentration range was proportional to the denitrification rate. Nitrous oxide was formed at redox potentials below +200 mV and started to disappear at negative Eh values.  相似文献   

2.
The amounts of N2O released in freeze‐thaw events depend on site and freezing conditions and contribute considerably to the annual N2O emissions. However, quantitative information on the N transformation rates in freeze‐thaw events is scarce. Our objectives were (1) to quantify gross nitrification in a Luvisol during a freeze‐thaw event, (2) to analyze the dynamics of the emissions of N2O and N2, (3) to quantify the contribution of nitrification and denitrification to the emission of N2O, and (4) to determine whether the length of freezing and of thawing affects the C availability for the denitrification. 15NO was added to undisturbed soil columns, and the columns were subjected to 7 d of freezing and 5 d of thawing. N2O emissions were determined in 3 h intervals, and the concentrations of 15N2O and 15N2 were determined at different times during thawing. During the 12 d experiment, 5.67 mg NO ‐N (kg soil)–1 was produced, and 2.67 mg NO ‐N (kg soil)–1 was lost. By assuming as a first approximation that production and loss occurred exclusively during thawing, the average nitrate‐production rate, denitrification rate, and immobilization rate were 1.13, 0.05, and 0.48 mg NO ‐N (kg soil)–1 d–1, respectively. Immediately after the beginning of the thawing, denitrification contributed by 83% to the N2O production. The ratios of 15N2 to 15N2O during thawing were narrow and ranged from 1.5 to 0.6. For objective (4), homogenized soil samples were incubated under anaerobic conditions after different periods of freezing and thawing. The different periods did not affect the amounts of N2 and N2O produced in the incubation experiments. Further, addition of labile substrates gave either increases in the amounts of N2O and N2 produced or no changes which suggested that changes in nutrient availability due to freezing and thawing are only small.  相似文献   

3.
Nitrate leaching depending on N fertilization and different crop rotations was studied at two sites with sandy soils in N Germany between 1995 and 2000. The leaching of NO was calculated by using a numerical soil‐water and N model and regularly measured Nmin values as input data. Also the variability of Nmin values on the sandy soils was determined along transects. They reveal the high variability of the Nmin values and show that it is not possible to confirm a significant Nmin difference between fertilizer treatments using the normal Nmin‐sampling intensity. Nitrate‐leaching calculations of five leaching periods showed that even strongly reduced N‐fertilizer applications did not result in a substantially lower NO leaching into the groundwater. Strong yield reductions of even more than 50%, however, were immediately measured. Mean NO concentrations in the groundwater recharge are >50 mg L–1 and are mainly due to mineralization from soil organic matter. Obviously, the adjustment of the N cycle in the soil to a new equilibrium and a reduced NO ‐leaching rate as a consequence of lower N inputs need a much longer time span. Catch crops are the most efficient way to reduce the NO concentrations in the groundwater recharge of sandy soils. Their success, however, strongly depends on the site‐specific development possibilities of the catch crop. Even with all possible measures implemented, it will be almost impossible to reach NO concentrations <50 mg L–1 in sandy soils. The only way to realize this goal on a regional scale could be by increasing areas with lower nitrate concentrations in the groundwater recharge like grassland and forests.  相似文献   

4.
Charcoal‐based amendments have a potential use in controlling NH3 volatilization from urea fertilization, owing to a high cation‐exchange capacity (CEC) that enhances the retention of NH . An incubation study was conducted to evaluate the potential of oxidized charcoal (OCh) for controlling soil transformations of urea‐N, in comparison to urease inhibition by N‐(n‐butyl) thiophosphoric triamide (NBPT). Four soils, ranging widely in texture and CEC, were incubated aerobically for 0, 1, 3, 7, and 14 d after application of 15N‐labeled urea with or without OCh (150 g kg?1 fertilizer) or NBPT (0.5 g kg?1 fertilizer), and analyses were performed to determine residual urea and 15N recovery as volatilized NH3, mineral N (as exchangeable NH , NO , and NO ), and immobilized organic N. The OCh amendment reduced NH3 volatilization by up to 12% but had no effect on urea hydrolysis, NH and NO concentrations, NO accumulation, or immobilization. In contrast, the use of NBPT to inhibit urea hydrolysis was markedly effective for moderating the accumulation of NH , which reduced immobilization and also controlled NH3 toxicity to nitrifying microorganisms that otherwise caused the accumulation of NO instead of NO . Oxidized charcoal is not a viable alternative to NBPT for increasing the efficiency of urea fertilization.  相似文献   

5.
Ammonium (NH ) nutrition causes retardation of growth in many plant species. In Arabidopsis grown with NH as the sole N source, growth retardation occurs already at early stages before photosynthesis has come to its full power. In order to describe the peculiarities of these retarded plants, they were compared with nitrate (NO )‐grown plants of the same age of 15 d. Photosynthetic activity as measured by CO2 uptake per unit chlorophyll is half as high in NH ‐grown seedlings as in NO ‐grown ones. This finding is confirmed by the analysis of chlorophyll fluorescence. Chloroplasts of NO ‐grown, but not of NH ‐grown, seedlings show starch deposits after 5 h of illumination with 40 μmol m–2 s–1. Gene‐expression analysis based on cDNA microarray and on Northern blots provide a clue about the biochemical background. After the first 2 weeks of growth, it seems that NO ‐grown seedlings subsist mainly on normal photosynthesis, whereas NH ‐grown seedlings still use lipids from the seeds stored in oleosomes. Corresponding to this observation, the mRNAs for enzymes of β‐oxidation are more strongly expressed in NH ‐grown seedlings. Different carbohydrate sources for sucrose synthesis are indicated by different gene expression. Higher gene expression of fructose bisphosphate aldolase (cytosolic isoform) in NO ‐grown seedlings indicates the dependence on photosynthesis, whereas a higher gene expression of PEP carboxykinase in NH ‐grown seedlings points to a prominent role of β‐oxidation of storage lipids still present.  相似文献   

6.
Recently nitric oxide (NO) has emerged as a key signal molecule in plants. However, little is known about the role of NO in the salt tolerance of halophytes. Effects of the NO donors sodium nitroprusside (SNP) and nitrate (NO ) on growth and ion accumulation in the euhalophyte Suaeda salsa under salinity were investigated in the present study. The results showed that higher SNP supply increased seedling emergence, but SNP had no effect on shoot growth and the concentrations of Na+, K+, Cl, and NO . Higher NO had no effect on seedling emergence of the species. Shoot Cl decreased, but NO3increased markedly, with a higher NO supply. The decrease in the estimated contribution of Cl to the osmotic potential was compensated for by an increase in that of NO . It appears that NO plays an important osmotic role in S. salsa under high salinity with a higher NO supply, and this trait may increase salt tolerance of the species under high salinity.  相似文献   

7.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

8.
Nitrogen (N) is taken up by most plant species in the form of nitrate (NO ) or ammonium (NH ). The plant response to continuous ammonium nutrition is species‐dependent. In this study, the effects of the source of N nutrition (NO , NH , or the mixture of NO and NH ) on the response of clover (Trifolium subterraneum L. cv. 45C) plants to prolonged root hypoxia was studied. Under aerobic conditions, plant growth was strongly depressed by NH , compared to NO or mixed N nutrition, as indicated by the significant decrease in root and shoot‐dry‐matter production (DW), root and shoot water contents (WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters (F0, Fv/Fm). However, the N source had no effect on chlorophyll a–to–chlorophyll b ratio. Under hypoxic conditions, the negative effects of root hypoxia on plant‐growth parameters (DW and WC), leaf chlorophyll concentration, and chlorophyll fluorescence parameters were alleviated by NH rather than NO supply. Concomitantly, shoot DW–to–root DW ratio, and root and leaf NH concentrations were significantly decreased, whereas root and leaf carbohydrate concentrations, glutamine synthetase activities, and protein concentrations were remarkably increased. The present data reveal that the N source (NO or NH ) is a major factor affecting clover responses to hypoxic stress, with plants being more tolerant when NH is the N form used. The different sensitivity is discussed in terms of a competition for energy between nitrogen assimilation and plant growth.  相似文献   

9.
Mobilization of non‐exchangeable ammonium (NH ) by hyphae of the vesicular‐arbuscular mycorrhizal (VAM) fungus Glumus mosseae was studied under controlled experimental conditions. Maize (Zea mays) and parsley (Petroselinum sativum) were grown either alone or in symbiosis with Glomus mosseae in containers with separated compartments for roots and hyphal growth. In one experiment, 15NH was added to the soil to differentiate between the native non‐exchangeable NH and the non‐exchangeable NH derived from N fertilization. Non‐exchangeable NH was mobilized by plant growth. Plant dry weight and N uptake, however, were not significantly influenced by mycorrhizal colonization of the roots. The influence of root infection with mycorrhizal fungus on the mobilization of non‐exchangeable NH was negligible. In the hyphal compartment, hyphal uptake of N resulted in a decrease of NH in the soil solution and of exchangeable NH . However, the NH concentration was still too high to permit the release of non‐exchangeable NH . The results demonstrate that, in contrast to roots, hyphae of VAM fungi are not able to form a non‐exchangeable‐NH depletion zone in the adjacent soil. However, under conditions of a more substantial depletion of the exchangeable NH in the mycorrhizal sphere (e.g., with longer growth), an effect of mycorrhiza on the non‐exchangeable NH might be found.  相似文献   

10.
Changes of EUF‐extractable nitrogen (N) (nitrate, ammonium, organic N) in 20 arable bare soils, subsequently planted with ryegrass (Lolium multiflorum L.) and cutting three times were investigated in pot experiments. All 20 soils responded qualitatively in the same way. During the period of bare soil, there was a significant increase of EUF‐extractable nitrate (EUF NO ), while extractable ammonium (EUF NH ) remained on the same level and organic N (EUF Norg) decreased. This decrease, however, was not significant. From sowing until the first cutting of the grass, EUF‐NO concentration decreased to almost zero. This low EUF‐NO level was maintained throughout the subsequent experimental period (three cuttings of grass). During the growth of the first cutting, EUF Norg decreased while EUF NH remained constant, however, on a low level. EUF NH fell during the growth of the second and third cutting. In this period, however, the N supply of the grass was insufficient. EUF Norg decreased during the growth of the second cutting, but increased during the growth of the third cutting. This shows that the EUF‐Norg fraction represents a transient pool, which gains and loses N. EUF NO , EUF NH , and EUF Norg correlated with the N uptake of the grass. Strongest correlation for EUF NO was found for the first cutting (p < 0.001), and for EUF NH and EUF Norg for the second and third cutting (p < 0.001). Total soil N was not correlated with the N uptake of the grass. EUF Norg was only about 2% of the total N. This relatively small EUF‐Norg fraction, however, is relevant for the mineralization of organic soil N, and the N quantity indicated by EUF Norg is in the range of the N amount mineralized in arable soils within a growing season.  相似文献   

11.
In recent years, interest has grown in cultivating Allium species with enhanced health benefits and/or distinct flavor. Concentrations of phytochemicals determining these desired characteristics may be influenced by nitrogen forms (ammonium or nitrate) and arbuscular mycorrhizal (AM) fungi. We examined these relations with the test plant bunching onion (Allium fistulosum L.). Three different ammonium‐to‐nitrate (NH : NO ) ratios were supplied in combination with or without inoculation with an AM fungus (Glomus mosseae). The plants were evaluated for dry weight, leaf number, and content of nutrients (N, NO , P, S), sugars (glucose, fructose, and sucrose), and organosulfur compounds (measured as pyruvic acid). The experiment was carried out under controlled conditions in a greenhouse. Plants were grown on perlite amended twice a day with nutrient solution. In nonmycorrhizal plants, the application of nutrient solution with predominant NO or NH4NO3 as N source supported adequate growth of Allium fistulosum while predominant NH supply resulted in decreased growth and occurrence of wilting symptoms. Mycorrhizal inoculation significantly increased dry weight and leaf number of predominantly NH ‐fed or NH4NO3‐fed plants. While shoot P concentration increased with higher NH supply, shoot N concentration increased in predominantly NH ‐fed plants only. Nitrogen form and AM colonization had little effect on shoot S or sugar concentrations. The total content in organosulfur compounds was significantly affected by both, N form and AM colonization. The optimal growth condition for a high formation of organosulfur compounds in this experiment was a nutrient solution with predominant NO supply, but when supported by AM fungi, Allium fistulosum produced similar amounts of pyruvic acid in NH4NO3‐fed plants.  相似文献   

12.
We have synthesized a novel ambipolar membrane for the simple, rapid, and simultaneous extraction of key nutrients from soil. The membrane was made by adding an anion‐ and a cation‐exchange resin to a polyvinyl alcohol hydrogel in the presence of glutaraldehyde as a cross‐linking agent. The synthetic membrane was efficient in adsorbing (extracting) NO , PO , K+, Ca2+, and Mg2+ ions from soil simultaneously. The ion‐adsorption capacity of the membrane was related to the soil nutrient status, duration of membrane–soil contact, and soil water content. The importance of these factors followed the order: soil nutrient status > contact time > soil water content. Adsorption by the membrane of NO and Mg2+ ions from soil leveled off after 48 h of membrane–soil contact but uptake of Ca2+, PO , and K+ ions required a longer contact time for equilibrium to be established. When the soil water content exceeds 55% w/w, this factor ceased to influence ion adsorption by the ambipolar‐resin membrane. The synthetic membrane is potentially useful for the in situ assessment of the nutrient requirement of certain crops at a given point in time.  相似文献   

13.
Translocation of nitrogen to the shoot of young bean plants after uptake of NO and NH by the root Phaseolus vulgaris plants (var. nana, cv. Saxa) at the primary leaf stage (without nodules) were fed during 6 hours with 15NO and 15NH, respectively. 24 hours after the absorption period more 15N from the absorbed NO was translocated from the root to the shoot. The presence of NH in the nutrient solution enhanced the translocation of 15NON, probably by an inhibition of nitrate reductase. NH4-+15N is mainly retained in the root by a high incorporation into the root protein. It can be concluded that nitrogen from newly absorbed NO is not retained and used for protein synthesis in the root according to the root's potential to synthesize protein. Nitrate reduction in the root is considered to be the limiting factor. This is supported by the fact that withdrawal of NO in the nutrient solution prior to the 15N-experiment increased NOtranslocation to the shoot as a consequence of a lowered level of nitrate reductase. In an experiment with 14NOsupply to the roots and 15NOapplication to the primary leaves (infiltration method) a considerable amount of 15N was translocated from the leaves to the roots. This indicates that an insufficient NOreduction in the root can be substituted by a retranslocation of reduced N-compounds from leaves to the roots. The proportion of NO reduced in the root influences also the pattern of primary distribution of nitrogen in the shoot of plants at the 4 leaf stage. At a concentration of 0,2 meq/l NO in the nutrient solution as compared to 20 meq/l NO during 10 hours a relative higher amount of 15N was transported from the root to the younger, growing leaves i.e. via the phloem to metabolic sinks.  相似文献   

14.
Effects of forest management (thinning) on gross ammonification, net ammonification, net nitrification, microbial biomass, and N2O production were studied in the forest floor of adjacent untreated control (“C”) and thinned (“T”) plots in three beech (Fagus sylvatica L.) stands in the Swabian Jura (Southern Germany) during three intensive field campaigns in the year 2004. The investigated sites are located less than 1 km apart on the slopes of a narrow valley. Due to different exposure (southwest, northeast, northwest), the three sites are characterized by warm‐dry microclimate (southwest site, SW) and cool‐moist microclimate (northeast site, NE; and northwest site, NW). Measurements at the NW site covered the second year (13 to 20 months) after thinning, and measurements at the SW and NE sites covered the sixth year (61 to 68 months) after thinning. Mean gross ammonification varied insignificantly across the six plots (range: 37.5 ? 31.2 to 51.0 ? 10.5 mg N (kg dry soil)–1 d–1). The SW site was characterized by very low net nitrification and nitrate (NO ) concentrations that were not significantly different between control and thinned plot. In contrast, for the thinned plot at the NE site (NET), significantly increased mean net nitrification (2.3 ? 1.2 mg N (kg dry soil)–1 d–1 at the NET plot vs. 0.4 ? 0.2 mg N (kg dry soil)–1 d–1 at the NEC plot) and mean extractable NO concentrations (43.9 ? 22.8 mg N (kg dry soil)–1 at the NET plot vs. 4.1 ? 0.8 mg N (kg dry soil)–1 at the NEC plot) were observed. The differences in net nitrification and NO concentrations across the research plots were related to differences in the forest‐floor C : N ratios: net nitrification increased exponentially below a threshold C : N value of about 25. The results of this study indicate that the forest floor of the warm‐dry SW site is very resistant to N loss triggered by thinning due to high C : N ratios around 30. Under the cool‐moist microclimate of the NE site, a significantly lower C : N ratio of 22.1 at the thinned plot (control plot: 26.7) coincided with significantly increased net nitrification. Thus, different responses of net nitrification to thinning under different microclimate appear to be triggered by different C : N ratios. Nitrous oxide production was mainly governed by forest‐floor water content, and since differences in water content at adjacent control and thinned plots were low, N2O production was not significantly different between adjacent control and thinned plots.  相似文献   

15.
Remediation of an uranium‐mine soil from Settendorf (East Germany) includes phytoextraction under conditions which make its heavy metals more plant‐available but less leachable. A second way is active inhibition of heavy metal uptake by the plant. In a pot trial with Chinese cabbage (Brassica chinensis L.), planted and unplanted soil samples were daily irrigated with deionized water or aqueous solutions with a total of (g (kg soil)–1) CaCl2 (0.26 Ca), NH4Cl (1.39), casein, sucrose, citric acid (13), and an extract of rape (B. napus L.) shoots (13 DW) in a phytotron for 26 d. Water‐irrigated plants were also treated with a 50 mM citric acid solution (10.5 g (kg soil)–1) 6 and 7 d prior to harvesting. Total elements in plant tissue and soluble elements in aqueous extracts from control and postharvest soils were determined by ICP‐AES. Supplements of NH , and the NH ‐generating casein and rape extract reduced soil pH during nitrification, and increased plant uptake of Cd, Cu, Ni, and Zn. Citric acid at 50 mM adjusted soil to pH 4.5–6.0 and enhanced uptake of all elements. Long‐term application of sucrose and citric acid increased pH and inhibited uptake of Cd, Cr, Cu, Ni, and Zn. Contemporarily, leaching of heavy metals and humic substances was lowest with Ca and NH and highest with sucrose and citric acid amendments. It is concluded that Chinese cabbage grown for chelate‐assisted phytoextraction should be supplied with Ca and NH to obtain a high plant biomass on soil with a low hazard of leaching. Metal uptake should be stimulated by application of chelator 7 d prior to harvesting. Undesired uptake of heavy metals by Chinese cabbage determined as food should be inhibited with carbohydrate amendments. Long‐term application of NH or chelator, which reduces the solubility of certain elements but increases their uptake moderately, is recommended as a tool for continuous phytoextraction technologies.  相似文献   

16.
Oat consumption has been rapidly increased worldwide because its high β‐glucan concentration may lower the level of blood cholesterol. The rates of β‐glucan accumulation in two husk and two nude oats were determined with an interval of 5 d after anthesis in a pot experiment. The results showed that a higher nitrogen level increased oat grain yield per plant, thousand‐grain weight, and concentrations of protein and β‐glucan. β‐glucan concentration generally increased with development of grain after anthesis, whereas the accumulation rate of β‐glucan was greater at the early stage of grain development and reached a maximum around 25 d after anthesis. We also found a larger β‐glucan concentration when plants were grown with NO ‐N as compared to NH ‐N. This study may suggest that the agronomic approaches such as nutrient management by optimizing the time and the level of nitrogen application and a higher ratio of NO ‐N to NH ‐N can play an important role in enhancing β‐glucan concentration in oat grains.  相似文献   

17.
It has been assumed that high winter N2O emissions from soils are the result of increased amounts of microbially available organic C liberated during freezing and metabolized during subsequent thawing. In a laboratory experiment, we attempted to simulate freeze‐thaw events by adding dissolved organic C (DOC) to sieved soil of high water content (95% water‐filled pore space). In a full factorial design, CO2 and N2O emissions of a) soil samples provided with DOC extracted from frozen soil and b) soil samples frozen for 46 days and thawed were compared. Additionally, NO , DOC and microbial ATP contents of all treatments were repeatedly analyzed during the experiment. The addition of DOC to unfrozen soil (–F+C) resulted in a substantial (22‐fold) increase in N2O emissions as compared to the control (–F–C). However, following thawing, the increase in N2O emissions was much larger (828‐fold in +F–C and 1243‐fold in +F+C). Freezing, but not the addition of DOC led to increased CO2 emissions. Neither treatment affected microbial adenylate content. By adding 15N‐labeled nitrate to the soil samples, the main process leading to elevated N2O flux rates after both DOC addition and freeze‐thaw treatment was identified as denitrification. We conclude that the availability of C substrate plays an important role for freeze‐thaw‐related N2O emissions. However, the fact that the simulated treatment and the freeze‐thaw treatment yielded significantly different amounts of N2O suggests that both quantity and quality of available C differed between the treatments. The localization of the liberated substrate, i.e., the availability in situ, seems to be of major importance for the amount of N2O produced.  相似文献   

18.
Recent studies have documented adverse affects of urea on the establishment and growth of aerobic rice when applied at seeding. The following experiments were conducted to examine the relative importance of ammonia and nitrite (NO$ _2^- $ ) toxicities as mechanisms contributing to poor germination and early growth of aerobic rice. Soil was collected from an experiment in the Philippines where aerobic rice was grown continuously for 7 years. Subsamples of the soil were: (1) pretreated with sulfuric acid (0.5 M H2SO4 added at 75 mL kg–1), (2) oven‐heated at 120°C for 12 h, or (3) left untreated. In a greenhouse study N was applied to the untreated, acidified, and oven‐heated soils as either urea or ammonium sulfate (0.0 or 0.3 g N kg–1). Plant height, root length, total biomass, and number of seminal roots were evaluated after 10 d. Microdiffusion incubations were used to assess the effects of soil pretreatment, N source, and N rate (0, 0.5, 1.0, 1.5 g N kg–1) on ammonia (NH3) volatilization and germination. Nitrite incubations were conducted to establish a critical level for NO$ _2^- $ toxicity and measure the extractable NO$ _2^- $ and germination trends as affected by soil pretreatment, N source, and N rate. On untreated soil, urea reduced early growth and germination while ammonium sulfate caused no adverse effects. Progressively higher rates of urea increased NH3 volatilization and inhibited germination, while oven‐heating and acidification minimized the adverse effects. All treatment combinations (soil pretreatment, N source, N rate) had extractable NO$ _2^- $ levels below the critical level of 0.2 g N kg–1, suggesting that ammonia and not NO$ _2^- $ toxicity was the principal cause of inhibition. Since the risk of NH3 toxicity is highest just following urea hydrolysis, strategies to optimize the timing and placement of urea should be considered.  相似文献   

19.
The quality of green tea is highly dependent on the concentration of free amino acids, whose profile is dominated by the unique amino acid theanine (N5‐ethyl‐glutamine). A high quality is associated with a high amino acid–to–catechin ratio, but previous results indicated that excessive chloride (Cl) supply is detrimental for amino acid accumulation. Several experiments were conducted to investigate the effect of chloride on growth and concentrations of free amino acids in young tea plants. Soil‐grown tea plants supplied with different levels of potassium (K) as K2SO4 or KCl exhibited increased concentrations of free amino acid in young shoots only when supplied with K2SO4, and the negative effect of KCl supply was mainly due to a reduced concentration of theanine. Concentrations of other nutrients in plant tissues were not influenced. The uptake of Cl and its interaction with nitrogen (N) uptake were further investigated in a second experiment, in which soil‐cultivated tea plants were supplied with varying amounts of Cl. Chloride application reduced yield of young shoots, and severity of leaf damage was related to the concentration of Cl in leaves. Nitrogen uptake was reduced by Cl addition. To verify whether the decrease of free amino acids was simply a result of inhibited NO assimilation, a third experiment was conducted, in which tea plants were NH ‐fed in the absence or presence (equivalent to the NH concentration) of Cl. Again, concentrations of theanine and total free amino acids in young shoots were reduced by Cl supply, but changes of the free–amino acid pool did not contribute to the maintenance of charge balance. However, concentration of theanine in roots, where it is synthesized, was not influenced by Cl. Total N concentrations of roots and mature leaves, uptake rate of NH , and activity of glutamine synthetase in fibrous roots and young leaves were all unaffected by Cl as well. It is suggested that translocation of theanine from root to shoot and its catabolism in young shoots might be influenced by Cl.  相似文献   

20.
An incubation and a pot experiment were conducted to evaluate the dissolution and agronomic effectiveness of a less reactive phosphate rock, Busumbu soft ore (BPR), in an Oxisol in Kenya. Resin (anion and anion + cation)‐extractable P and sequentially extracted P with 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl were analyzed. Dissolution was determined from the increase in anion resin (AER)–, NaHCO3‐, and NaOH‐extractable P in soil amended with PR compared with the control soil. Where P was applied, resin P significantly increased above the no‐P treatment. Busumbu‐PR solubility was low and did not increase significantly in 16 weeks. Anion + cation (ACER)‐extractable P was generally greater than AER‐P. The difference was greater for PR than for triple superphosphate (TSP). The ACER extraction may be a better estimate of plant P availability, particularly when poorly soluble P sources are used. Addition of P fertilizers alone or in combination with Tithonia diversifolia (TSP, BPR, TSP + Tithonia, and BPR + Tithonia) increased the concentration of labile inorganic P pools (NaHCO3‐ and NaOH‐Pi). Cumulative evolved CO2 was significantly correlated with cumulative N mineralized from Tithonia (r, 0.51, p < 0.05). Decrease in pH caused NH ‐N accumulation while NO ‐N remained low where Tithonia was incorporated at all sampling times. However, when pH was increased, NH ‐N declined with a corresponding rise in NO ‐N. Tithonia significantly depressed soil exchangeable acidity relative to control with time. A significant increase (p < 0.05) was observed for P uptake but not dry‐mass production in maize where BPR was applied. The variations in yield and P uptake due to source and rates of application were statistically significant. At any given P rate, highest yields were obtained with Tithonia alone. Combination of Busumbu PR with TSP or Tithonia did not enhance the effectiveness of the PR. The poor dissolution and plant P uptake of BPR may be related to the high Fe content in the PR material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号