首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rugged and sensitive method was developed to monitor urinary concentrations of O,S-dimethyl hydrogen phosphorothioate (O,S-DMPT), a specific biomarker of exposure to the organophosphate insecticide methamidophos. After pH adjustment and C18 solid phase extraction column cleanup, the urine was lyophilized at a low temperature to prevent loss of possibly highly volatile and unstable O,S-DMPT metabolite. The dried residue was derivatized using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide and 1% tert-butyldimethylchlorosilane (MTBSTFA + 1% TBDMCS) in acetonitrile. After it was filtered, the derivatized product was analyzed and quantified by gas chromatography using a pulse flame photometric detector specific for phosphorus compounds. The limit of detection for this method was 0.004 ppm with a limit of quantitation of 0.02 ppm of urine. The mean recovery value for O,S-DMPT from 17 urine samples fortified at varying concentrations was 108% with a standard deviation of 12%.  相似文献   

2.
A method is described for the simultaneous determination of carbaryl (1-naphthyl methylcarbamate), malathion [diethyl (dimethoxythiophosphorylthio) succinate], fenitrothion (O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate), and diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) in sesame (Sesamum indicum L.) seeds. Sesame seeds were Soxhlet extracted with n-hexane, and the extract was subjected to a liquid-liquid partitioning and column cleanup to remove the oily coextractives prior to analysis by high performance liquid chromatography (HPLC). The mean percent recoveries (+/- standard deviations) from sesame seeds fortified with carbaryl (0.004 to 0.035 microgram/g), malathion (0.53 to 4.25 microgram/g), fenitrothion (0.22 to 1.78 microgram/g), and diazinon (0.54 to 4.35 microgram/g) were 83.3 +/- 5.7, 85.5 +/- 6.6, 85. 6 +/- 7.2, and 88.4 +/- 4.8, respectively. The method was used for the simultaneous analysis of carbaryl, malathion, fenitrothion, and diazinon residues in sesame seeds obtained from an Ethiopian field crop that had been treated with the pesticides during its growing period.  相似文献   

3.
杀虫剂氧化乐果(O,O-二甲基-S-(N-甲氨基甲酰甲基)硫赶磷酸酯)的14C标记合成经4步完成。其放化收率为27.81%(以14C-碳酸钡计),放化纯度经薄板检测大于95%。  相似文献   

4.
5.
White and black "niebe" beans [Vigna unguiculata (L.) Walp] from Senegal were treated with fenitrothion (O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate), and the residues were determined by high-performance liquid chromatography (HPLC) and electron capture gas chromatography (EC-GC). Fenitrothion residues from the beans were extracted by Soxhlet extraction (SE) and microwave-assisted extraction (MAE). A column cleanup procedure was used to remove the coextractives in the extract before HPLC and EC-GC analyses. The overall mean recoveries of fenitrothion residues in the 0.19-1.90 microg/kg fortification range determined from extracts obtained by SE and MAE were 88.4 and 89.8%, respectively, with respective relative standard deviations of <4%. The results show that MAE is a viable alternative to the commonly used SE for the determination of fenitrothion residues in beans.  相似文献   

6.
A gas chromatography equipped with a flame photometric detector operating in the phosphorus mode provided a sensitive method for determining residues of famphur, O,O-dimethyl O-[p-(dimethylsulfamoyl)phenyl]phosphorothioate, and its oxygen analog in reindeer and cattle tissues. With extraction and cleanup, 0.025 ppm famphur and 0.06 ppm oxygen analog could be detected in the body tissues. Recoveries of 73-100% were obtained from fat, muscle, liver, and kidney.  相似文献   

7.
Photodegradation of (14)C-labeled fenitrothion ([O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate]) and parathion ([O,O-diethyl O-(4-nitrophenyl) phosphorothioate]) was conducted on a series of solid surfaces including isolated tomato fruit and leaf cuticle waxes. The wax-coated glass plate gave the comparative degradation of fenitrothion observed for the intact plant but both surfaces of octadecyl-capped silica gel and poly(tetrafluoroethylene) enhanced its volatilization. Photoinduced desulfuration and ester cleavage were common to both pesticides in waxes, but formation of the azo derivative was found to be a major degradation pathway characteristic of parathion. The modified electronic states of the nitro group by introduction of m-methyl group accounted for this different photoreactivity based on molecular orbital calculations.  相似文献   

8.
接种蚯蚓对施加秸秆的旱作稻田N2O排放的影响   总被引:1,自引:1,他引:0  
罗天相  胡锋  李辉信  刘莎 《土壤》2013,45(6):1003-1008
通过田间试验研究了秸秆不同施用方式下接种蚯蚓(威廉腔环蚓,Metaphire guillelmi)对水稻旱作土壤N2O排放通量的影响。结果显示施加秸秆和接种蚯蚓增加了N2O的排放量。在秸秆表施的情况下,接种蚯蚓处理显著提高了N2O的排放量,从12.54 kg/hm2提高到14.94 kg/hm2 (P<0.05);但是在秸秆混施的情况下,接种蚯蚓处理未显著提高N2O的排放量。蚯蚓的存在使土壤NO3--N的含量显著提高,尤其是在混施秸秆的情况下。由于栽培期内NH4+-N变化幅度较小,不同处理NO3--N含量的变化决定了土壤矿质氮的分异。农田生态系统中蚯蚓对N2O排放的贡献主要体现在促进秸秆混入土壤,从而加快秸秆的分解和N2O的排放。  相似文献   

9.
10.
For a long time, farmers in the red soil region of southern China have returned crop residues to the soil, but how various crop residues influence nitrous oxide (N2O) emissions is not well understood. We compared the influence of returning different crop residues [rapeseed cake (RC), maize straw, rice straw and wheat straw (WS)] in combination with different levels of nitrogen (N) fertilizer (nil, low and high) on red soil N2O emissions. Results confirmed the inverse relationship between cumulative N2O emissions and residue C:N ratio in red soil under different levels of N fertilizer. However, N‐fertilizer application did not significantly influence N2O emissions in the WS (which had the highest C:N ratio) and corresponding control treatments, while it enhanced N2O emissions in the RC (which had the lowest C:N ratio) treatment and displayed significantly higher cumulative N2O emissions with low N fertilizer application. This phenomenon may be attributed to the poor nutrient content in red soil, which leads to ‘Liebig's Law of the Minimum’ on available C. N fertilizer application provided sufficient available N, while the readily available C, which was mainly dependent on the degradability of the residue, became the crucial factor influencing N2O emissions. Additional experiments, which showed that the addition of glucose and sucrose could increase N2O emissions when N () was sufficient, confirmed this hypothesis. Thus, to reduce N2O emissions when returning residues to red soil, we suggest that both the residue C:N ratio and the quality should be considered when deciding whether to apply N fertilizer.  相似文献   

11.
Abstract

Nitrous oxide (N2O) emissions result from the nitrification and denitrification processes, the latter strongly affected by soil organic carbon (C) derived from plant residues. This study addressed two questions: (1) does plant residue C become less available to denitrifiers after a period of aerobic incubation, and (2) do plant residues with smaller particle sizes provide C for higher rates of N2O production due to a faster decomposition rate? Nitrous oxide fluxes from soil amended with alfalfa or corn residues, or glucose were measured in the laboratory using a gas flow‐through chamber system. Soil amended with these C substrates was also subjected to a 5‐d aerobic preincubation treatment. The significance of particle size on C availability was studied by comparing N2O released from soil amended with ground (particle size <1 mm) and large pieces (5‐cm lengths) of alfalfa residues. A 5‐d aerobic preincubation of soil amended with plant residues resulted in reduced N2O production during a subsequent anaerobic period. Results suggested that, due to consumption of the most available substrate, remaining C in plant residues is less available to denitrifiers after a period of aerobic incubation. Higher N2O losses were found with large alfalfa particles than with ground alfalfa.  相似文献   

12.
Abstract

Nitrous oxide (N2O) contributes to global climate change, and its emission from soil–crop systems depend on soil, environmental, and anthropogenic factors. Thus, we evaluated the variability of N2O emissions measured by microchambers (cross section: 184 cm2) from a groundnut–fallow–maize–fallow cropping system of the humid tropics. The crops received inorganic nitrogen (N) plus crop residues (NC), inorganic N alone as ammonium sulfate (RN), and half of the inorganic N along with crop residues and chicken manure (N1/2CM), amounting for the crop rotation to 322, 180, and 400 kg N ha?1 yr?1, respectively. The N2O fluxes during the groundnut–maize crop rotation were log‐normally distributed, and the frequency distributions were positively skewed. Daytime changes in N2O fluxes were inconsistent, and the 50% of total N2O emission during the 12 h measurement periods was attained earlier under maize (~11∶00 h) than groundnut covers (~13∶00 h). Spatial variability in each treatment with eight gas chambers was large but smaller during the cropping periods than the fallow, indicating masking efficiency of crop covers for the soil heterogeneity that was accelerated presumably by antecedent climatic variables. The temporal variability of N2O emissions was also large (coefficients of variation, CV, ranged from 60 to 81%), involving both input differences between treatments and measurement periods. As such, the relative deviation from the annual mean of total N2O emission was high during the period after a large N application with a maximum of +480%, due to addition of chicken manure. The seasonal contribution of summer and monsoon to N2O emissions was insignificant. However, intensive rainfall negatively (?0.65**) and the amount of added N from either source positively (0.83***) correlated with the integrated N2O emissions, and those were exponential. Results suggest that around noon (12∶00 h) gas collection could represent well the daily N2O fluxes, increasing the number or size of the gas chambers could minimize the large variability, and mainly the rainfall and N inputs regulated its emissions in the humid tropics of Malaysia.  相似文献   

13.
A method is reported for the simultaneous determination of coumaphos (o,o-diethyl o(3-chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl)phosphorothioate) and its oxygen analog, Coroxon, in eggs in the ppb range. The residues are extracted with acetone and chloroform. The extract is purified by liquid-liquid partition followed by column chromatography and then by 2-dimensional thin layer chromatography. The fluorescence is measured directly on the chromatogram.  相似文献   

14.
Manipulating the N release from high-N crop residues by simultaneous mixing of these residues with organic biological waste (OBW) materials seems to be a possible method to reduce NO3 leaching. The aim of this study was to examine whether the incorporation of OBW materials together with a high-N crop residue (celery) had also an effect on N2O emission from horticultural soil under short-term and optimised laboratory conditions. A sandy loam soil and celery residues were mixed with different OBW materials and brought into PVC tubes at 80% water-filled pore space and 15°C. Every 2.5 h, a gas sample was taken and analysed by gas chromatography for its N2O concentration. The soil amended with only celery residues had a cumulative N2O emission of 9.6 mg N kg–1 soil in 50 h. When the celery residues were mixed with an OBW material, the N2O emission was each time lower than the emission from the celery-only treatment (between 3.8 and 5.9 mg N kg–1 soil during maximum 77 h), except with paper sludge (17.2 mg N kg–1 soil in 100 h). The higher N2O emission from the paper sludge treatment was probably due to its unusually low C:N ratio. Straw, green waste compost 1 (GWC1) and 2 (GWC2), saw dust, and tannic acid reduced the N2O emission of the celery treatment by 40 to 60%. Although the N2O reduction potential can be expected to be lower and with differing dynamics under field conditions, this study indicates that apart from reducing NO3 leaching, OBW application may at the same time reduce N2O emissions after incorporation of high-N crop residues.  相似文献   

15.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   

16.
Phenolic and pigment (anthocyanin) stability in processing-ripe strawberries in response to aging under mildly oxidizing conditions, provoked by exogenous application of H(2)O(2), has been studied to design a simplified model system to study color alterations (pigment decay) that occur in strawberry-derived foods during processing and storage. The results showed that phenolic metabolism in strawberry slices during aging under mildly oxidizing conditions may be either oxidative (independent of exogenous H(2)O(2)) or peroxidative (dependent on exogenous H(2)O(2)), and that feeding strawberry slices with H(2)O(2) stimulates the oxidative phenomena which take place in their absence, such as the processes of anthocyanin and catechin degradation. The results also showed that because both (+)-catechin and anthocyanin levels in strawberry slices fall as H(2)O(2) increases, both p-hydroxybenzoic acid and brown polymeric compounds are formed. Comparison of these results with controls in the absence of H(2)O(2) suggests that peroxidase may play an important role in catechin consumption and in anthocyanin degradation and brown polymer formation during the aging of strawberry slices under mildly oxidizing conditions.  相似文献   

17.
Agricultural soil is a major source of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3). Little information is available on emissions of these gases from soils amended with organic fertilizers at different soil water contents. N2O, NO and NH3 emissions were measured in large-scale incubations of a fresh sandy loam soil and amended with four organic fertilizers, [poultry litter (PL), composted plant residues (CP), sewage sludge pellets (SP) and cattle farm yard manure (CM)], urea fertilizer (UA) or a zero-N control (ZR) for 38 days. Fertilizers were added to soil at 40, 60 or 80% water-filled pore space (WFPS). The results showed that urea and organic fertilizer were important sources of N2O and NO. Total N2O and NO emissions from UA ranged from 0.04 to 0.62%, and 0.23 to 1.55% of applied N, respectively. Total N2O and NO emissions from organic fertilizer treatments ranged from 0.01 to 1.65%, and <0.01 to=" 0.55%=" of=" applied=" n,=" respectively.=" the=" lower=">2O and NO emissions from CP and CM suggested that applying N is these forms could be a useful mitigation option. Comparison of the NO-N/N2O-N ratio suggested that nitrification was more dominant in UA whereas denitrification was more dominant in the organic fertilizer treatments. Most N was lost from PL and UA as NH3, and this was not influenced significantly by WFPS. Emissions of NH3 from UA and PL ranged from 62.4 to 69.6%, and 3.17 to 6.11% of applied N, respectively.  相似文献   

18.
(-)-Epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) are two important antioxidants in tea. They also display some antitumor activities, and these activities are believed to be mainly due to their antioxidative effects. However, the specific mechanisms of antioxidant action of tea catechins remain unclear. In this study are isolated and identified two novel reaction products of EGCG and one product of EGC when they were reacted separately with H(2)O(2). These products are formed by the oxidation and decarboxylation of the A ring in the catechin molecule. This study provides unequivocal proof that the A ring of EGCG and EGC may also be an antioxidant site. This study also indicates an additional reaction pathway for the oxidation chemistry of tea catechins.  相似文献   

19.
The aim of this study was to investigate the effect of crop residues from winter oilseed rape on N2O emissions from a loamy soil and to determine the effect of different tillage practices on N2O fluxes. We therefore conducted a field experiment in which crop residues of winter oilseed rape (Brassica napus L., OSR) were replaced with 15N labelled OSR residues. Nitrous oxide (N2O) emissions and 15N abundance in the N2O were determined for a period of 11 months after harvest of OSR and in the succeeding crop winter wheat (Triticum aestivum L.) cultivated on a Haplic Luvisol in South Germany. Measurements were carried out with the closed chamber method in a treatment with conventional tillage (CT) and in a treatment with reduced soil tillage (RT). In both tillage treatments we also determined N2O fluxes in control plots where we completely removed the crop residues. High N2O fluxes occurred in a short period just after OSR residue replacement in fall and after N‐fertilization to winter wheat in the following spring. Although N2O emissions differed for distinct treatments and sub‐periods, cumulative N2O emissions over the whole investigation period (299 days) ranged between 1.7 kg and 2.4 kg N2O‐N ha?1 with no significant treatment effects. More than half of the cumulative emissions occurred during the first eight weeks after OSR replacement, highlighting the importance of this post‐harvest period for annual N2O budgets of OSR. The contribution of residue N to the N2O emission was low and explained by the high C/N‐ratio fostering immobilization of mineral N. In total only 0.03% of the N2O‐N emitted in the conventional tillage treatment and 0.06% in the reduced tillage treatment stemmed directly from the crop residues. The 15N recovery in the treatments with crop residues was 62.8% (CT) and 75.1% (RT) with more than 97% of the recovered 15N in the top soil. Despite our measurements did not cover an entire year, the low contribution of the OSR residues to the direct N2O emissions shows, that the current IPCC tier 1 approach, which assumes an EF of 1%, strongly overestimated direct emissions from OSR crop residues. Furthermore, we could not observe any relationship between tillage and crop residues on N2O emission, only during the winter period were N2O emissions from reduced tillage significantly higher compared to conventional tillage. Annual N2O emission from RT and CT did not differ.  相似文献   

20.
A simple, sensitive, and rapid method is described for the quantitative estimation of ng amounts of parathion (O,O-diethyl O-p-nitrophenyl phosphorothioate) as paraoxon (O,O-diethyl O-p-nitrophenyl phosphate) on thin layer chromatograms. Paraoxon is detected by inhibition, using p-nitrobenzenediazonium fluoroborate as the chromogenic reagent. This chromogenic reagent is more sensitive than Fast Blue B or indoxyl acetate; 0.1 ng may be detected and amounts from 5 to 50 ng may be estimated. The method is a viable alternative to gas chromatographic analysis for parathion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号