首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spanish black radish (Raphanus sativus L. var. niger) is a member of the Cruciferae family that also contains broccoli and Brussels sprouts, well-known to contain health-promoting constituents. Spanish black radishes (SBR) contain high concentrations of a glucosinolate unique to the radish family, glucoraphasatin, which represents >65% of the total glucosinolates present in SBR. The metabolites of glucosinolates, such as isothiocyanates, are implicated in health promotion, although it is unclear whether glucosinolates themselves elicit a similar response. The crude aqueous extract from 0.3 to 3 mg of dry SBR material increased the activity of the phase II detoxification enzyme quinone reductase in the human hepatoma HepG2 cell line with a maximal effect at a concentration of 1 mg/mL. Treatment of HepG2 cells with the crude aqueous extract of 1 mg of SBR per mL also significantly induced the expression of mRNA corresponding to the phase I detoxification enzymes: cytochrome P450 (CYP) 1A1, CYP1A2, and CYP1B1 as well as the phase II detoxification enzymes: quinone reductase, heme oxygenase 1, and thioredoxin reductase 1. Previous studies have shown that the myrosinase metabolites of different glucosinolates vary in their ability to induce detoxification enzymes. Here, we show that while glucoraphasatin addition was ineffective, the isothiocyanate metabolite of glucoraphasatin, 4-methylthio-3-butenyl isothiocyanate (MIBITC), significantly induced phase II detoxification enzymes at a concentration of 10 microM. These data demonstrate that the crude aqueous extract of SBR and the isothiocyanate metabolite of glucoraphasatin, MIBITC, are potent inducers of detoxification enzymes in the HepG2 cell line.  相似文献   

2.
Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.  相似文献   

3.
Herbal therapies are commonly used by patients with cancer, despite little understanding about biologically active chemical derivatives. We recently demonstrated that the herbal combination PC-SPES, which contains licorice root, had anti-prostate cancer activity attributable to estrogen(s) that produced a chemical castration. A recent study also demonstrated that licorice root alone decreased circulating testosterone in men. Other studies demonstrated antitumor activity of PC-SPES in vitro associated with decreased expression of the anti-apoptotic protein Bcl-2 and in patients independent of chemical castration, suggesting that other mechanisms of antitumor activity exist separate from chemical castration. In the present study, we assessed licorice root extract for effects on Bcl-2 to identify novel cytotoxic derivatives. Licorice root extract induced Bcl-2 phosphorylation as demonstrated by immunoblot and G2/M cell cycle arrest, similarly to clinically used antimicrotubule agents such as paclitaxel. Bioassay-directed fractionations resulted in a biologically active fraction for Bcl-2 phosphorylation. HPLC separation followed by mass spectrometry and NMR identified 6 compounds. Only one molecule was responsible for Bcl-2 phosphorylation; it was identified as 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4'-hydroxyphenyl) 1-propanone (beta-hydroxy-DHP). The effect on Bcl-2 was structure specific, because alpha-hydroxy-DHP, 1-(2,4-dihydroxyphenyl)-2-hydroxy-3-(4'-hydroxyphenyl) 1-propanone, in contrast to beta-hydroxy-DHP, was not capable of Bcl-2 phosphorylation. Pure beta-hydroxy-DHP induced Bcl-2 phosphorylation in breast and prostate tumor cells, G2/M cell cycle arrest, apoptosis demonstrated by Annexin V and TUNEL assay, decreased cell viability demonstrated by a tetrazolium (MTT) assay, and altered microtubule structure. Therefore, these data demonstrate that licorice root contains beta-hydroxy-DHP, which induced Bcl-2 phosphorylation, apoptosis, and G2/M cell cycle arrest, in breast and prostate tumor cells, similarly to the action of more complex (MW >800) antimicrotubule agents used clinically.  相似文献   

4.
Pterostilbene, an active constituent of blueberries, is known to possess anti-inflammatory activity and also induces apoptosis in various types of cancer cells. Here, the effects of pterostilbene on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that pterostilbene was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Pterostilbene-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of pterostilbene-induced apoptosis was also investigated. The results show the caspase-2, -3, -8, and -9 are all activated by pterostilbene, together with cleavage of the downstream caspase-3 target DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Moreover, the results indicate that the Bcl-family of proteins, the mitochondrial pathway, and activation of the caspase cascade are responsible for pterostilbene-induced apoptosis. Pterostilbene markedly enhanced the expression of growth arrest DNA damage-inducible gene 45 and 153 (GADD45 and GADD153) in a time-dependent manner. Flow cytometric analysis indicated that pterostilbene blocked cell cycle progression at G1 phase in a dose- and time-dependent manner. Pterostilbene increased the p53, p21, p27, and p16 proteins and decreased levels of cyclin A, cyclin E, cyclin-dependent kinase 2 (Cdk2), Cdk4, and Cdk6, but the expression of cyclin D1 was not affected. Over a 24 h exposure to pterostilbene, the degree of phosphorylation of Rb was decreased after 6 h. In summary, pterostilbene induced apoptosis in AGS cells through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, GADD expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins. The induction of apoptosis by pterostilbene may provide a pivotal mechanism of the antitumor effects and for treatment of human gastric cancer.  相似文献   

5.
6.
Two new lactams, coixspirolactam D (1) and coixspirolactam E (2), and a new spiroenone, coixspiroenone (3), together with seven known compounds, coixspirolactam A (4), coixspirolactam B (5), coixspirolactam C (6), coixlactam (7), coixol (8), ethyl dioxindole-3-acetate (9), and isoindol-1-one (10), and two neolignans, zhepiresionol (11) and ficusal (12), were isolated from the bioactive subfraction of adlay bran ethanolic extract (ABE). Compounds 9 and 10 are the first isolates from natural resources. The structures of new compounds were identified by spectroscopic methods, including infrared (IR) spectrum, 1D and 2D nuclear magnetic resonance (NMR), and mass spectrum (MS). All of the isolated compounds were tested for antiproliferative effects on MCF-7, MDA-MB-231, and T-47D cells. Results showed that compounds 1, 3, 4, 6, and 7 at 50 μM significantly inhibited MCF-7 cell proliferation by 30.2, 19.2, 21.0, 13.5, and 32.4%, respectively; compounds 2, 4, and 7 significantly inhibited T-47D cells at 50 μM by 20.7, 24.8, and 28.9%; and compounds 1, 2, and 12 significantly inhibited MDA-MB-231 cells at 50 μM by 47.4, 25.3, and 69.3%, respectively. In conclusion, ABE has antiproliferative activities, and this effect is partially related to the presence of lactams and spiroenone.  相似文献   

7.
Monascus-fermented red rice has traditionally been used as a natural food colorant or food preservative of meat and fish for centuries. Recently, it has become a popular dietary supplement due to many of its bioactive constituents being discovered. Commercial Monascus-fermented red rice was used in this study. According to the cell-based cytotoxicity assay, a compound with selective cytotoxicity was found and identified as ankaflavin. Ankaflavin was found to be toxic to human cancer cell lines Hep G2 and A549 with a similar IC50 value of 15 microg/mL, while it posed no significant toxicity to normal MRC-5 and WI-38 cells at the same concentration. For elucidating the possible mode of cell death, Hep G2 cells were treated with ankaflavin for 48 h to examine the morphological change of the chromatin. Chromosomal condensation and fragmentation were found, and a significant sub-G1 peak was found by flow cytometry. Apoptosis was therefore suggested as the possible mechanism. Monascin, an analogue of ankaflavin, was also tested in this study. However, it showed no cytotoxicity and did not induce death of Hep G2 cells.  相似文献   

8.
The objective of this study was to investigate the antiproliferative effect and the mechanism of the methanol extracts of mycelia (MEM) form Antrodia camphorata in submerged culture toward HepG2 cells. The results showed that MEM-induced cell apoptosis involved up-regulation of Fas and down-regulation of Bcl-2, DR3, DR4, TNFRI, and TNFRII in HepG2 cells, while no changes on the levels of Bax, Bid, Bad, and Bak protein were observed. On the basis of these results, the involvement of the Fas/Fas ligand (FasL) death-receptor pathway, in MEM-induced apoptosis in HepG2 cells, was investigated. The apoptosis inducing activity was significantly enhanced by a Fas activator and inhibited by a Fas antagonist. To know about the effect of MEM on the activation of the apoptotic pathway, the adenovirus transfected with Bcl-2 was infected on HepG2 cells. The data showed that the percentage of apoptotic cells induced by MEM in Bcl-2-infected HepG2 (Bcl-2 overexpression) was not significantly different from that of uninfected HepG2. These results demonstrate that MEM induces HepG2 apoptosis through inhibition of cell growth and up-regulation of Fas/FasL to activate the pathway of caspase-3 and -8 cascades.  相似文献   

9.
Mahlavu cells, poorly differentiated and p53 mutants of a human hepatoma subline, are known to be highly refractory to a number of chemotherapeutic agents and radiotherapy due to their high expressions of multidrug resistance gene-1 (MDR-1) and Bcl-2 proteins. Thus, it is desirable to search for an alternative strategy for effective eradication of this type of cancer cells. We present evidence here for the first time that 6-shogaol (6-SG), an alkanone isolated from the rhizomes of ginger, can effectively induce apoptotic cell death of Mahlavu cells via an oxidative stress-mediated caspase-dependent mechanism. The cascade of events in 6-SG-induced apoptosis of these cells involved an initial overproduction of reactive oxygen species (ROS) followed by a severe depletion of intracellular glutathione (GSH) contents. Both events consequently entailed a significant drop in mitochondrial transmembrane potential (DeltaPsim), which ultimately activated the activities of caspases 3/7 resulting in the DNA fragmentation. Interestingly, we also found that N-acetylcysteine (NAC), an antioxidant and a precursor of GSH biosynthesis, could offer a near complete protection of apoptotic cell death exerted by 6-SG. Similarly, exogenously added GSH could also provide protection with an equal efficacy. However, it was paradoxical that both Boc-Asp(OMe)-fmk (a broad caspases inhibitor) and cyclosporin A (an mitochondrial permeability transition opening inhibitor) could only partially protect these cells from 6-SG-induced apoptosis. Taking these data into consideration, it is obvious that GSH depletion is the major contributing factor in arbitrating 6-SG-induced apoptosis of Mahlavu cells. In conclusion, we provide here a novel modality that can help to eradicate a p53 mutant of human hepatoma cells by using a natural consistent isolated form of ginger. These data also provide evidence to reaffirm the notion that consumption of certain foodstuffs can be beneficial to health because some of the constituents contained in them may be anticarcinogenic.  相似文献   

10.
The effect of daily contact of a grape seed extract (GSE) on Caco-2 cell proliferation and differentiation was investigated. GSE at 400 mg/L was added to Caco-2 cells for 2 h a day after successive incubation in saliva, gastric, and pancreatic media. When applied at the beginning of the cell culture, GSE triggered inhibition of cell growth associated with a possible cytotoxic reaction. On the other hand, when the treatment was applied to confluent cells, treated cells displayed a higher protein content than control cells and a more developed brush border, with taller and denser microvilli. These observations were accompanied by stimulation of alkaline phosphatase activity, especially at day 5 postconfluency, with a 2.2-fold increase in comparison with the control. On the other hand, aminopeptidase N activity was inhibited throughout the differentiation period in GSE-treated cells to reach 28.8% of control cell activity on day 30. GSE did not affect either sucrase-isomaltase activity or cytoplasmic lactate dehydrogenase (LDH) activity, which otherwise appeared to be a good cellular marker. GSE treatment of Caco-2 cells thus inhibited their proliferation from seeding onward and stimulated both proliferation and differentiation after confluency.  相似文献   

11.
Monascus pigments have been reported to possess anticancer effects in various cancer cells; however, the molecular mechanisms of their anticancer properties remain largely unknown. Monascuspiloin is an analogue of the Monascus pigment monascin, and its anticancer growth activity against human prostate cancer cells was evaluated using in vitro and in vivo models. Monascuspiloin effectively inhibits the growth of both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. Monascuspiloin preferentially induces apoptosis in LNCaP cells by attenuating the PI3K/Akt/mTOR pathway. In androgen-independent PC-3 cells, monascuspiloin induces G2/M arrest and autophagic cell death by an AMPK-dependent pathway. Induction of autophagy in PC-3 cells further sensitizes cells to apoptosis induced by monascuspiloin. Monascuspiloin inhibits tumor growth in nude mice bearing PC-3 xenografts through induction of apoptosis and autophagy. This study is the first to demonstrate that monascuspiloin has therapeutic potential for the treatment of both androgen-dependent and -independent human prostate cancers.  相似文献   

12.
We have previously shown that six propolins, A-F, could be isolated from Taiwanese propolis (TP) and that they exerted a broad spectrum of biological activities. Recently, we isolated a seventh compound, propolin G. Its chemical structure has been identified by NMR and fast atom bombardment-mass spectrometry spectra and was found to be identical to a known compound, nymphaeol C. We used high-performance liquid chromatography to determine the relative contents of propolins C, D, F, and G in TP collected in various seasons and regions and found them to be relatively higher in TPs collected from May to July than from September to October. In our present study, we were interested in the various biological activities of TP extract as well as in propolin G as a pure compound. We found that propolin G could efficiently induce apoptosis in brain cancer cell lines (glioma and glioblastoma). The apoptosis might have been through a mitochondrial- and caspase-dependent pathway. This result demonstrated that the TP collection season was more an important factor than the geographical region. Propolis has been suggested to possess a potent antioxidant activity. We further evaluated the antioxidant property of propolin G using DPPH (1,2-diphenyl-2-picryhydrazyl). Our results indicate that propolin G does possess free radical scavenging activity. We also evaluated the neuroprotective action of propolin G, TP, and BP (Brazilian propolis) extracts against oxidative stress in rat primary cortical neurons. Our data demonstrate that propolin G and TP extracts have a marked neuroprotective effect that is greater than BP extract. In conclusion, the isolation and characterization of propolin G from TP have demonstrated for the first time that this compound is a potent inducer of apoptosis in brain cancer cells and that this compound and TP extract exhibit a protective effect against oxidative stress in rat cortical neurons.  相似文献   

13.
To study the potential hepatic metabolism of olive oil phenols, human hepatoma HepG2 cells were incubated for 2 and 18 h with hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate, three phenolic constituents of olive oil. After incubation, culture media and cell lysates were hydrolyzed with beta-glucuronidase and sulfatase and analyzed by LC-MS. In vitro methylation, glucuronidation, and sulfation of pure phenols were also performed. Methylated and glucuronidated forms of hydroxytyrosol were detected at 18 h of incubation, together with methylglucuronidated metabolites. Hydroxytyrosyl acetate was largely converted into free hydroxytyrosol and subsequently metabolized, yet small amounts of glucuronidated hydroxytyrosyl acetate were detected. Tyrosol was poorly metabolized, with <10% of the phenol glucuronidated after 18 h. Minor amounts of free or conjugated phenols were detected in cell lysates. No sulfated metabolites were found. In conclusion, olive oil phenols can be metabolized by the liver as suggested by the results obtained using HepG2 cells as a hepatic model system.  相似文献   

14.
Natural antimutagens may prevent cancer and are therefore of great interest to oncologists and the public at large. Phytochemicals are potent antimutagen candidates. When the Ames test was applied to examine the antimutagenic potency of supercritical carbon dioxide (SC-CO(2)) extracts of Terminalia catappa leaves at a dose of 0.5 mg/plate, toxicity and mutagenicity were not detected. The antimutagenic activity of SC-CO(2) extracts increased with decreases of temperature (60, 50, and 40 degrees C) and pressure (4000, 3000, and 2000 psi) used for extraction. The most potent antimutagenicity was observed in extracts obtained at 40 degrees C and 2000 psi. At a dose of 0.5 mg of extract/plate, approximately 80% of the mutagenicity of benzo[a]pyrene (B[a]P, with S-9) and 46% of the mutagenicity of N-methyl-N '-nitroguanidine (MNNG, without S-9) were inhibited. Media supplemented with SC-CO(2) extracts at a range of 0-500 microg/mL were used to cultivate human hepatoma (Huh 7) and normal liver (Chang liver) cells. The viability of the cells was assayed by measuring cellular acid phosphatase activity. A dose-dependent growth inhibition of both types of cells was observed. The SC-CO(2) extracts were more cytotoxic to Huh 7 cells than to Chang liver cells. The observation that SC-CO(2) extracts of T. catappa leaves did not induce mutagenicity at the doses tested while exhibiting potent antimutagenicity and were more cytotoxic to human hepatoma cells than to normal liver cells is of merit and warrants further investigation.  相似文献   

15.
The fully ripened fruit of Katsura-uri Japanese pickling melon ( Cucumis melo var. conomon) has rarely been used for food because the midripened fruit is utilized for making pickles, but the fully ripened fruit is no longer valuable for pickles due to the fruit body being too soft. We have considered the utilization of the fully ripened Katsura-uri fruit that may be used for nonpickling products, particularly if the fully ripened fruit demonstrated health benefits such as anticarcinogenic properties. The phytochemical extract from the fully ripened fruit of Katsura-uri Japanese pickling melon was purified via a bioassay-guided fractionation scheme, which was based on the induction of differentiation in a RCM-1 human colon cancer cell line. On the criteria of two differentiation markers (duct formation and alkaline phosphatase activity), the most potent fraction contained a compound identified as 3-methylthiopropionic acid ethyl ester, based on GC retention time, EI-MS, (1)H NMR, and (13)C NMR spectra. Previously, the role of 3-methylthiopropionic acid ethyl ester was considered as an odor producing compound in many fruits, but this study indicates potential medical benefits of this compound.  相似文献   

16.
Ferulic acid (FA) and para-coumaric acid (p-CA) may mediate the protective effects of whole-grain cereals against colon cancer. Therefore, the effects of FA and p-CA on the metabolic activity, proliferation, cell cycle phase distribution, and kinetics of the colonic endothelial tumor cell line Caco-2 was studied. Both compounds at 1500 microM decreased the number of cells to 43-75% of control after 2-3 days of treatment. Cell cycle phase distribution and cell cycle kinetics were determined by flow cytometric analysis after bromodeoxyuridine labeling. Each compound at 1500 microM decreased the proportion of cells in the G(1) phase and increased the proportion of cells in the S and G(2) phases. Treatment with 1500 microM FA significantly increased the length of the S phase, while p-CA did not. It was concluded that FA and p-CA inhibited cell proliferation by presumably affecting different cell cycle phases, and this warrants further investigations because this inhibition may be one explanation for the diet-related protection against cancer.  相似文献   

17.
18.
Previously, we have found phosphopeptides (PPPs) from hen egg yolk phosvitin possess a potent antioxidative activity against oxidative stress in human intestinal epithelial cells, Caco-2. However, their biological activity at the cellular level has not yet fully understood. The objective of this study is to evaluate the regulation of glutathione (GSH) biosynthesis-associated and antioxidant enzymes against oxidative stress in Caco-2 cells using an in vitro model. Treatment of 1 mM H2O2-induced Caco-2 cells with PPPs increased cellular GSH levels, concomitant with a significant increase in gamma-glutamylcysteine synthetase (gamma-GCS) activity and the expression of gamma-GCS heavy subunit mRNA. Furthermore, intracellular glutathione reductase, glutathione S-transferase, and catalase activities were elevated by PPPs. In addition, PPPs with high content of phosphorus showed higher induction of these enzyme activities than PPPs without phosphorus. These data indicate that oligophosphopeptides from hen egg yolk phosvitin can up-regulate cellular GSH biosynthesis-associated enzymes activity and antioxidative activities, which play key roles against tissue oxidative stress in the human intestinal epithelial cells.  相似文献   

19.
Benzyl isothiocyanates (BITC), a member of the isothiocyanate (ITC) family, inhibits cell growth and induces apoptosis in many types of human cancer cell lines. The present study investigated mechanisms underlying BITC-induced apoptosis in A375.S2 human melanoma cancer cells. To observe cell morphological changes and viability, flow cytometric assays, cell counting, and a contrast-phase microscopic examination were carried out in A375.S2 cells after BITC treatment. Cell cycle distribution and apoptosis were assessed with the analysis of cell cycle by flow cytometric assays, DAPI staining, propidium iodide (PI), and annexin V staining. Apoptosis-associated factors such as reactive oxygen species (ROS) formation, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and caspase-3 activity were evaluated by flow cytometric assays. Abundance of cell cycle and apoptosis associated proteins was determined by Western blotting. AIF and Endo G expression was examined by confocal laser microscope. Results indicated that (1) BITC significantly reduced cell number and induced cell morphological changes in a dose-dependent manner in A375.S2 cells; (2) BITC induced arrest in cell cycle progression at G(2)/M phase through cyclin A, CDK1, CDC25C/Wee1-mediated pathways; (3) BITC induced apoptosis and increased sub-G(1) population; and (4) BITC promoted the production of ROS and Ca(2+) and loss of ΔΨ(m) and caspase-3 activity. Furthermore, BITC induced the down-regulation of Bcl-2 expression and induced up-regulation of Bax in A375.S2 cells. Moreover, BITC-induced cell death was decreased after pretreatment with N-acetyl-l-cysteine (NAC, a ROS scavenger) in A375.S2 cells. In conclusion, the results showed that BITC promoted the induction of G(2)/M phase arrest and apoptosis in A375.S2 human melanoma cells through ER stress- and mitochondria-dependent and death receptor-mediated multiple signaling pathways. These data suggest that BITC has potential as an agent for the treatment of melanoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号