首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of retinoic acid‐metabolizing enzymes,ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, CYP26B1 and CYP26C1 in canine testis during post‐natal development
Authors:VR Kasimanickam
Affiliation:1. Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA;2. Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
Abstract:Mammalian spermatogenesis involves highly regulated temporal and spatial dynamics, carefully controlled by several signalling processes. Retinoic acid (RA) signalling could have a critical role in spermatogenesis by promoting spermatogonia differentiation, adhesion of germ cells to Sertoli cells, and release of mature spermatids. An optimal testicular RA concentration is maintained by retinaldehyde dehydrogenases (ALDHs), which oxidize RA precursors to produce RA, whereas the CYP26 class of enzymes catabolizes (oxidize) RA into inactive metabolites. The objective was to elucidate gene expression of these RA‐metabolizing enzymes (ALDH1A1, ALDH1A2, ALDH1A3, CYP26A1, CYP26B1 and CYP26C1) and their protein presence in testes of young, peripubertal and adult dogs. Genes encoding RA‐synthesizing isozymes ALDH1A1, ALDH1A2 and ALDH1A3 and RA‐catabolizing isomers CYP26A1, CYP26B1 and CYP26C1 were expressed in testis at varying levels during testicular development from birth to adulthood in dogs. Based on detailed analyses of mRNA expression patterns, ALDH1A2 was regarded as a primary RA‐synthesizing enzyme and CYP26B1 as a critical RA‐hydrolysing enzyme; presumably, these genes have vital roles in maintaining RA homeostasis, which is imperative to spermatogenesis and other testicular functions in post‐natal canine testis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号