SlGH9-15 regulates tomato fruit cracking with hormonal and abiotic stress responsiveness cis-elements |
| |
Authors: | LIN Hao-wei WU Zhen ZHOU Rong CHEN Bin ZHONG Zhao-jiang JIANG Fang-ling |
| |
Affiliation: | College of Horticulture, Nanjing Agricultural University/Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing 210095, P.R.China |
| |
Abstract: | Fruit cracking occurs easily during the late period of fruit development when plants encounter an unsuitable environment, dramatically affecting fruit production and marketing. This study conducted the bulked segregant RNA-Seq (BSR) to identify the key regulatory gene of fruit cracking in tomatoes. BSR-Seq analysis illustrated that two regions associated with irregularly cracking were located on chromosomes 9 and 11, containing 127 candidate genes. Further, through differentially expression analysis and qRT-PCR in cracking-susceptible and cracking-resistant genotypes, the candidate gene SlGH9-15 (Solyc09g010210) with significantly differential expression levels was screened. Bioinformatics analysis of the GH9 gene family revealed that 20 SlGH9 genes were divided into three groups. The phylogenetic analysis showed that SlGH9-15 was closely related to cell wall construction-associated genes AtGH9B1, AtGH9B6, OsGH9B1, and OsGH9B3. The cis-acting elements analysis revealed that SlGH9-15 was activated by various hormones (ethylene and ABA) and abiotic stresses. The expression pattern indicated that 13 SlGH9 genes, especially SlGH9-15, were highly expressed in the cracking-susceptible genotype. Its expression level gradually increased during fruit development and achieved maximum value at the red ripe stage. Additionally, the cracking-susceptible tomato showed higher cellulase activity and lower cellulose content than the cracking-resistant tomato, particularly at the red ripe stage. This study identified SlGH9-15 as a key gene associated with fruit cracking in tomatoes for the first time and gives new insights for understanding the molecular mechanism and complex regulatory network of fruit cracking. |
| |
Keywords: | tomato irregular cracking BSR-Seq GH9-15 |
本文献已被 ScienceDirect 等数据库收录! |
| 点击此处可从《农业科学学报》浏览原始摘要信息 |
|
点击此处可从《农业科学学报》下载免费的PDF全文 |
|