首页 | 本学科首页   官方微博 | 高级检索  
     


Role of endothelium and nitric oxide in modulating in vitro responses of colonic arterial and venous rings to vasodilatory neuropeptides in horses
Authors:Rustin M. Moore   Steven A. Sedrish   Earnestine P. Holmes   Catherine E. Koch     Changaram S. Venugopal
Affiliation:Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA. rmoore@vetmed.lsu.edu
Abstract:The objective of this study was to determine and compare the in vitro responses of equine large colon arterial and venous rings to vasodilatory neuropeptides; calcitonin gene-related peptide (CGRP); substance P (SP); vasoactive intestinal polypeptide (VIP); and acetylcholine (ACh), a standard nonpeptide endothelium-dependent vasodilator. Responses of vessel rings to graded concentrations (10(-11) M to 10(-5) M) of each drug were determined in endothelium-intact, denuded, and Nomega-nitro-L-arginine methyl ester (L-NAME, 10(-5) M)-treated rings that were pre-contracted with norepinephrine. Percentage maximal relaxation (PMR), defined as the % decrease from the contracted state, was determined. Because all rings did not relax at least 50%, EC50 values could not be consistently calculated. Arterial rings with intact endothelium were more sensitive to CGRP, compared with VIP and SP, and venous rings of all conditions were more sensitive to VIP than CGRP or SP. Overall, arteries had a greater PMR for ACh compared with SP and VIP. Intact and L-NAME treated arteries had a greater PMR than denuded arteries; there were no differences in PMR of intact and L-NAME treated arteries. Veins had a greater PMR for VIP than CGRP, SP, or ACh. Calcitonin gene-related peptide caused greater relaxation in intact arteries, whereas VIP causes greater relaxation in veins. Arterial relaxation was dependent upon the presence of intact endothelium. The response of veins to VIP among the conditions tested was not different, suggesting VIP has direct actions on venous smooth muscle. These neuropeptides modulate vasomotor tone via vasorelaxation in colonic arteries and veins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号