首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器视觉的小贯小绿叶蝉智能识别的研究与应用
引用本文:边磊,何旭栋,季慧华,蔡晓明,罗宗秀,陈华才,陈宗懋. 基于机器视觉的小贯小绿叶蝉智能识别的研究与应用[J]. 茶叶科学, 2022, 42(3): 376-386. DOI: 10.13305/j.cnki.jts.20220506.001
作者姓名:边磊  何旭栋  季慧华  蔡晓明  罗宗秀  陈华才  陈宗懋
作者单位:中国农业科学院茶叶研究所,浙江 杭州 310008;杭州益昊农业科技有限公司,浙江 杭州 310018;中国计量大学,浙江 杭州 310018;杭州益昊农业科技有限公司,浙江 杭州 310018;中国计量大学,浙江 杭州 310018
基金项目:浙江重点研发计划(2019C02033);;财政部和农业农村部:国家现代农业产业技术体系(CARS-19);
摘    要:深度学习已经在农作物害虫实时监测的智能识别过程中广泛应用。以小贯小绿叶蝉(Empoasca onukii)识别模型为基础,研究深度学习在诱虫板上叶蝉识别中的应用,旨在提高小贯小绿叶蝉田间种群调查的准确性。本研究设计了一种茶园小贯小绿叶蝉的识别、计数方法,首先采用黄色诱虫板诱集小贯小绿叶蝉,利用相机对诱虫板进行图像采集并上传至服务器,然后通过服务器部署的目标检测算法,对图像中叶蝉进行识别与计数。通过算法筛选,确定YOLOv3作为识别算法,用改进后的Soft-NMS代替原来的NMS,用K-means聚类方法计算新的先验框的尺寸,提升YOLOv3对目标识别的速度和准确率。通过田间试验对比诱虫板上叶蝉的真实数量,结果显示优化后识别算法的准确率可达到95.35%以上。本研究验证了诱虫板诱集、目标识别算法和物联网技术相结合,能够为小贯小绿叶蝉田间种群的实时监测提供技术支持,可为其他具有颜色偏爱性昆虫的实时监测和茶园害虫综合治理提供参考。

关 键 词:深度学习  目标检测  小贯小绿叶蝉  种群监测  YOLOv3
收稿时间:2021-10-09

Research and Application of Intelligent Identification of Empoasca onukii Based on Machine Vision
BIAN Lei,HE Xudong,JI Huihua,CAI Xiaoming,LUO Zongxiu,CHEN Huacai,CHEN Zongmao. Research and Application of Intelligent Identification of Empoasca onukii Based on Machine Vision[J]. Journal of Tea Science, 2022, 42(3): 376-386. DOI: 10.13305/j.cnki.jts.20220506.001
Authors:BIAN Lei  HE Xudong  JI Huihua  CAI Xiaoming  LUO Zongxiu  CHEN Huacai  CHEN Zongmao
Affiliation:1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; 2. Hangzhou Yihao Agricultural Technology Co., Ltd., Hangzhou 310018, China; 3. China Jiliang University, Hangzhou 310018, China
Abstract:Deep learning has been widely used in intelligent identification in the progress of real-time monitoring of crop pests. Based on the identification model of tea leafhopper, Empoasca onukii, the application of deep learning in field leafhopper recognition was introduced to improve the precision of field population investigation of E. onukii. In this paper, a method of identification and count of E. onukii in tea garden was designed. Firstly, yellow sticky card was used to attract tea leafhoppers, and images of cards were collected by camera and uploaded to the web server. Then, target detection algorithm deployed by the server was used to identify and count the leafhoppers in the images. Through algorithm screening, YOLOv3 was determined as the recognition algorithm, and the improved soft-NMS was used to replace the original NMS. K-means clustering method was used to calculate the size of the new prior frame, so as to improve the speed and precision of YOLOv3. The results show that the average precision of the optimized algorithm could reach more than 95.35% comparing with the real number of leafhoppers on the sticky card. Therefore, the combination of the sticky card trapping, target recognition algorithm and internet of things technology could realize the real-time monitoring of population for E. onukii, which could provide a reference for other insects with color preference and integrated pest management in tea gardens.
Keywords:deep learning  target detection  Empoasca onukii  population monitoring  YOLOv3  
本文献已被 万方数据 等数据库收录!
点击此处可从《茶叶科学》浏览原始摘要信息
点击此处可从《茶叶科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号