首页 | 本学科首页   官方微博 | 高级检索  
     

大豆杂种产量相关的位点及等位变异分析
引用本文:杨加银,贺建波,王金社,管荣展,盖钧镒. 大豆杂种产量相关的位点及等位变异分析[J]. 作物学报, 2011, 37(1): 48-57. DOI: 10.3724/SP.J.1006.2011.00048
作者姓名:杨加银  贺建波  王金社  管荣展  盖钧镒
作者单位:1 南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095; 2 江苏徐淮地区淮阴农业科学研究所 / 江苏省环洪泽湖生态农业生物技术重点实验室, 江苏淮安 223001
基金项目:本研究由国家重点基础研究发展规划(973计划)项目(2006CB101708, 2009CB118404, 2010CB125906), 国家高技术研究发展计划(863计划)项(2006AA100104, 2009AA101106), 国家自然科学基金项目(30671266), 国家科技支撑计划项目(2006BAD13B05-7)和高等学校创新引智计划项目(B08025)资助。
摘    要:选用来源于中国黄淮和美国的熟期组II~IV的8个大豆品种, 按Griffing方法II设计, 配成28个双列杂交组合, 包括8个亲本共计36份材料。选用300个SSR标记, 对8个大豆亲本进行全基因组扫描, 利用基于回归的单标记分析法, 对大豆杂种产量和分子标记进行相关性分析, 估计等位变异的效应和位点的基因型值, 剖析杂种组合的等位变异。结果表明, 300个SSR标记中有38个与杂种产量显著相关, 分布于17个连锁群上, 其中D1a和M等连锁群上较多, 有8个位于连锁定位的QTL区段内(±5 cM)。单个位点可分别解释杂种产量表型变异的11.95%~30.20%。杂种的位点构成中包括有增效显性杂合位点、增效加性纯合位点、减效加性纯合位点和减效显性杂合位点4部分, 其相对重要性依次递减。从38个显著相关的SSR标记位点中, 遴选出Satt449、Satt233和Satt631等9个优异标记基因位点, Satt449~A311、Satt233~A217和Satt631~A152等9个优异等位变异, 以及Satt449~A291/311、Satt233~A202/207和Satt631~A152/180等9个优异杂合基因型位点。这些结果为理解杂种优势的遗传构成和大豆杂种产量聚合育种提供了依据。

关 键 词:大豆  双列杂交  杂种优势  单标记分析  杂合位点  纯合位点
收稿时间:2010-04-14

Analysis of Loci and Alleles Associated with Hybrid Yield in Soybean
YANG Jia-Yin,HE Jian-Bo,WANG Jin-She,GUAN Rong-Zhan,GAI Jun-Yi. Analysis of Loci and Alleles Associated with Hybrid Yield in Soybean[J]. Acta Agronomica Sinica, 2011, 37(1): 48-57. DOI: 10.3724/SP.J.1006.2011.00048
Authors:YANG Jia-Yin  HE Jian-Bo  WANG Jin-She  GUAN Rong-Zhan  GAI Jun-Yi
Affiliation:1.Soybean Research Institute, Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China;2.Huaiyin Institute of Agricultural Sciences of Xuhuai Region / Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223001, China
Abstract:Single marker regression analysis is a effective way to detect differences among genotypes associated with marker alleles in quantitative traits. Eight soybean parental materials, seven from Huang-Huai region in China and one from US with maturity group II–IV, were used to develop a set of diallel crosses according to Griffing’s Method II, including the eight parents and their twenty-eight crosses. The molecular data of 300 SSR markers on eight parental materials were obtained and analyzed for association between SSR markers and hybrid yield using the single marker regression analysis. The hybrid crosses were dissected into their allele constitution and the effects of alleles and genotypic values of single locus were estimated. The results showed that 38 SSR loci located on 17 linkage groups were identified to associate with hybrid yield in the diallel crosses with more loci on linkage groups D1a, M, etc., and eight of the 38 loci were located within a region of ±5 cM apart from a known QTL identified from family-based linkage (FBL) mapping in the literature. Each of the loci explained 11.95%–30.20% of the phenotypic variance of hybrid yield. The allele pairs of the hybrids were composed of four parts, i.e. positive dominant heterozygous loci, positive additive homozygous loci, negative additive homozygous loci and dominant heterozygous loci, with their relative importance in a descending order. Among the 38 loci associated with hybrid yield, nine elite loci such as Satt449, Satt233 and Satt631 and nine elite alleles such as Satt449–A311, Satt233–A217 and Satt631–A152 were identified. Meanwhile, nine heterozygous allele pairs such as Satt449–A291/311, Satt233–A202/207 and Satt631–A152/180 were detected. These results will provide some relevant information for understanding the genetic basis of heterosis and lay a foundation for hybrid soybean breeding by design.
Keywords:Soybean  Diallel cross  Heterosis  Single marker analysis  Heterozygous loci  Homozygous loci
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号