The integration of climate change,spatial dynamics,and habitat fragmentation: A conceptual overview |
| |
Authors: | Marcel HOLYOAK Sacha K. HEATH |
| |
Affiliation: | 1. Department of Environmental Science and Policy, University of California, Davis CA 95616, USA;2. Graduate Group in Ecology, University of California, Davis CA 95616, USA |
| |
Abstract: | A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source–sink dynamics, changes in species' geographic range and community composition. Climate‐related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work |
| |
Keywords: | global change global climate change habitat fragmentation metapopulation spatial dynamics |
|
|