首页 | 本学科首页   官方微博 | 高级检索  
     

巨桉糖基转移酶基因EgrGATL1序列特征及表达分析
引用本文:陆军,孙丽娟,王晓荣,吉泓睿,倪晓详,程龙军. 巨桉糖基转移酶基因EgrGATL1序列特征及表达分析[J]. 浙江农林大学学报, 2018, 35(4): 604-611. DOI: 10.11833/j.issn.2095-0756.2018.04.004
作者姓名:陆军  孙丽娟  王晓荣  吉泓睿  倪晓详  程龙军
作者单位:1.浙江农林大学 省部共建亚热带森林培育国家重点实验室, 浙江 杭州 3113002.山东莒南县望海楼国有林场 山东 莒南 276600
基金项目:浙江省科技厅林木新品种选育重大科技专项2016C02056-9国家自然科学基金资助项目31270657
摘    要:EgrGATL1(Eucgr.I01882)是巨桉Eucalyptus grandis糖基转移酶GT8家族中GATL子类GATL-a子组的成员,多参与细胞壁组分如果胶、木聚糖等的生物合成。实时定量聚合酶链式反应(qRT-PCR)分析表明:EgrGATL1在木质部和韧皮部的相对表达量较高;不同低温(-8,-4,0,4,8℃)和4℃不同时间(0,2,6,12,24,48 h)处理对EgrGATL1都有强烈诱导作用。4℃不同时间处理下,EgrGATL1基因共表达产物主要参与代谢途径分析数据库(KEGG)中的糖代谢和氨基酸代谢途径。干旱胁迫对EgrGATL1有诱导作用;100 μmol·L-1茉莉酸甲酯(MeJA)处理对EgrGATL1表达呈现瞬时诱导效应;200 mmol·L-1氯化钠(NaCl)和100 μmol·L-1脱落酸(ABA)对其表达有抑制作用,而且随处理时间延长,2种处理对EgrGATL1的抑制规律有很强同步性。这些结果说明:EgrGATL1有可能通过参与细胞壁组分生物合成和ABA等植物生长调节剂活性调控,在巨桉低温、干旱和高盐等非生物逆境响应过程中发挥一定作用。

关 键 词:植物学   巨桉   EgrGATL1   非生物逆境   基因表达
收稿时间:2017-05-02

Glycosyltransferases gene EgrGATL1 in Eucalyptus grandis
LU Jun,SUN Lijuan,WANG Xiaorong,JI Hongrui,NI Xiaoxiang,CHENG Longjun. Glycosyltransferases gene EgrGATL1 in Eucalyptus grandis[J]. Journal of Zhejiang A&F University, 2018, 35(4): 604-611. DOI: 10.11833/j.issn.2095-0756.2018.04.004
Authors:LU Jun  SUN Lijuan  WANG Xiaorong  JI Hongrui  NI Xiaoxiang  CHENG Longjun
Affiliation:1.State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, Zhejiang China2.Wanghailou State-Owned Forest Farm, Ju'nan 276600, Shandong, China
Abstract:In Eucalyptus grandis, EgrGATL1 (Eucgr. I01882), a member of the glycosyltransferases 8 family belongs to the GATL subfamily, which contributes to the biosynthesis of cell wall components such as pectin and xylan, is classified as the GATL-a subgroup. In this study, the protein sequence of EgrGATL1 was analyzed and cis-elements were searched in the promoter sequence of this gene with MathInspector software. Real time fluorescence quantitative Polymerase Chain Reaction(qRT-PCR) method was used to evaluate expression pattern of EgrGATL1 under treatments of low temperatures (-8, -4, 0, 4, 8℃), time course at 4℃ (0, 2, 6, 12, 24, 48 h), drought, 100 μmol·L-1 MeJA, 200 mmol·L-1 NaCl and 100 μmol·L-1 ABA. In addition, a KEGG analysis was used to test co-expression genes of EgrGATL1 under treatment of time course at 4℃. The protein sequence analysis showed EgrGATL1 contains a typical GT8 domain. Results of expression in different tissues showed that expression of EgrGATL1 was higher in xylem and phloem than in roots and leaves. Low temperature (-8, -4, 0, 4, 8℃) and time course treatment at 4℃ both can promote the expression of EgrGATL1. With KEGG analysis, 25 genes co-expressed with EgrGATL1 can match to KEGG pathways, 11 genes belong to the sugar metabolism pathways and 8 genes were distributed to amino acid metabolism pathways. EgrGATL1 was also induced by drought and showed transient induction with the 100 μmol·L-1 MeJA treatment. And, there is no significant difference between the expression patterns of EgrGATL1 with treatments of 200 mmol·L-1 NaCl and 100 μmol·L-1 ABA. Thus, EgrGATL1 was possibly involved in cell wall remodeling and with activity of hormones such as ABA, thereby implying a possible role in low temperature, drought, and salinity stress responses in E. grandis.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号