首页 | 本学科首页   官方微博 | 高级检索  
     

天山雪岭云杉生物量分配格局及异速生长模型
引用本文:兰洁,肖中琪,李吉玫,张毓涛. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3): 416-423. DOI: 10.11833/j.issn.2095-0756.20190384
作者姓名:兰洁  肖中琪  李吉玫  张毓涛
作者单位:1.新疆林业科学院 森林生态研究所,新疆 乌鲁木齐 8300632.北京林业大学 林学院, 北京 1000833.新疆维吾尔自治区林业厅 天然林保护工程和产业发展办公室,新疆 乌鲁木齐 830063
基金项目:“十二五”国家科技支撑计划子项目(2015BAD07B030304);中央财政林业改革发展资金(林业科技推广示范补助)项目(新〔2017〕TG19号)
摘    要:  目的  雪岭云杉Picea schrenkiana是新疆山区重要树种。了解雪岭云杉地上地下生物量分配及碳储量,对新疆森林资源调查具有一定意义。  方法  采用整株收获法分析30株雪岭云杉地上地下生物量分配格局,利用胸径(D)、树高(H)和胸径-树高(D2H、D3/H和DbHc)作为变量建立树干、树枝、树叶、树根、地上及整株生物量异速生长模型。  结果  雪岭云杉树干、树枝、树叶及树根生物量存在显著性差异(P<0.01)。整株生物量为12.04~2 014.34 kg·株?1,地上和地下生物量分别为10.16~1 475.17和1.88~539.18 kg·株?1,树干、树枝、树叶及树根生物量占整株生物量的56.86%、13.03%、5.96%和24.15%,根冠比为0.08~0.55。植株水平上,建立基于胸径及树高变量的各器官生物量模型,其中树根生物量的最优生物量模型为W=a(D2H)b,其他器官生物量模型均为W=aDbHc。影响云杉生物量的主要环境因素重要性排序依次为坡位、坡度、海拔及土壤厚度。  结论  基于胸径-树高因素的异速生长模型可以较好地实现雪岭云杉各器官生物量的拟合,可对其生物量及碳储量进行有效估算。图4表3参30

关 键 词:森林测计学   生物量   分配格局   异速生长模型   器官   雪岭云杉
收稿时间:2019-06-26

Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains
LAN Jie,XIAO Zhongqi,LI Jimei,ZHANG Yutao. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. Journal of Zhejiang A&F University, 2020, 37(3): 416-423. DOI: 10.11833/j.issn.2095-0756.20190384
Authors:LAN Jie  XIAO Zhongqi  LI Jimei  ZHANG Yutao
Affiliation:1.Institute of Forestry Ecology, Xinjiang Academy of Forestry Sciences, Urumqi 830063, Xinjiang, China2.College of Forestry, Beijing Forestry University, Beijing 100083, China3.Office of Natural Forest Protection Engineering and Industrial Development, Xinjiang Forestry Department, Urumqi 830063, Xinjiang, China
Abstract:  Objective  A proper understanding of the above-ground and underground biomass allocation and carbon storage of Picea schrenkiana, an important tree species in Xinjiang mountainous areas of great significance to the forest resources investigations in Xinjiang. To establish the allometric growth models of trunk, branch, leaf, root, the above-ground part and the whole plant with DBH(D), tree height (H) and DBH-H (D2H, D3/H and DbHc).   Method  Analysis of the of above-ground and underground biomass distribution pattern of 30 P. schrenkiana trees by whole plant harvesting method.  Result  There were significant differences in the biomass of trunk, branch, leaf and root of P. schrenkiana (P<0.01). The biomass of whole P. schrenkiana trees ranged from 12.04?2 014.34 kg·plant?1, and the biomass of the above-ground part and the underground part were 10.16?1 475.17 and 1.88?539.18 kg·plant?1 respectively. The biomass of trunk, branch, leaf and root accounted for 56.86%, 13.03%, 5.96% and 24.15% of the whole plant, and the range of root-shoot ratio was 0.08?0.55. At the plant level, the biomass model of each organ based on DBH(D) and tree height(H) variables was established. The optimal biomass model of root biomass was W=a(D2H)b, and other organs was W=aDbHc. Slope position, slope, altitude and soil thickness are the main environmental factors affecting the biomass of spruce.  Conclusion  The allometric growth model based on tree height-DBH can better fit the biomass of each organ of P. schrenkiana, and can effectively estimate its biomass and carbon reserves. [Ch, 4 fig. 3 tab. 30 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号