首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列SVR模型的玉米价格预测研究
引用本文:张宝文,王川,杨春英,王来刚. 基于时间序列SVR模型的玉米价格预测研究[J]. 中国农学通报, 2020, 36(31): 115-120. DOI: 10.11924/j.issn.1000-6850.casb20191200938
作者姓名:张宝文  王川  杨春英  王来刚
作者单位:1.河南师范大学计算机与信息工程学院,河南新乡 453000;2.河南省农业科学院农业经济与信息研究所,郑州 450000
基金项目:河南省重大科技专项“主要大田作物智慧生产配套技术研究及产业化”(171100110600)
摘    要:研究旨在运用时间序列和支持向量回归(support vector regression,SVR)理论,建立短期玉米价格预测模型,为玉米市场监测预警提供技术支持与决策依据。本研究根据玉米价格序列波动的非线性特征,以河南省2010年1月1日—2019年6月30日的月度数据为研究对象,结合混沌性时间序列与SVR理论,研究一种短期玉米价格预测模型。通过相空间重构的方法对价格序列进行处理,利用重构后的数据训练模型,运用网格交叉验证(GridSearchCV)对研究模型进行优化。得到一种基于时间序列支持向量回归的玉米价格预测模型。将研究模型的预测结果进行对比分析,结果显示,研究模型的预测值更贴近真实值,其平均相对误差(MRE)和均方根误差(RMSE)分别为0.006和20.57,优于传统支持向量回归模型的预测结果。研究模型可以为玉米价格预测提供方法依据,且相较于传统预测方法在精度方面具有优势。

关 键 词:玉米价格  预测模型  支持向量回归  相空间重构  时间序列  
收稿时间:2019-12-11

Corn Price Prediction Based on Time Series SVR Model
Zhang Baowen,Wang Chuan,Yang Chunying,Wang Laigang. Corn Price Prediction Based on Time Series SVR Model[J]. Chinese Agricultural Science Bulletin, 2020, 36(31): 115-120. DOI: 10.11924/j.issn.1000-6850.casb20191200938
Authors:Zhang Baowen  Wang Chuan  Yang Chunying  Wang Laigang
Affiliation:1.College of Computer and Information Engineering, Henan Normal University, Xinxiang Henan 453000;2.Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450000
Abstract:The study aims to establish a short-term corn price forecasting model by using time series and support vector regression (SVR) theory, to provide technical support and decision-making basis for corn monitoring and early warning. Based on the non-linear characteristics of corn price series fluctuations, this study took the monthly data of Henan Province from January 1, 2010 to June 30, 2019 as the research object, and combined a chaotic time series with SVR theory, to study a kind of short-term corn price prediction model. The price sequence was processed by the phase space reconstruction method, the model was trained with the reconstructed data, and the grid cross validation (GridSearchCV) was used to optimize the research model. A corn price prediction model was obtained based on time series support vector regression. By analyzing the prediction results of the research model, it is showed that the prediction value of the research model is closer to the true value, and its average relative error (MRE) and root mean square error (RMSE) is 0.006 and 20.57, respectively, which are superior to the prediction results of the traditional support vector regression model, with more accuracy.
Keywords:corn price  prediction model  support vector regression  phase space reconstruction  time series  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国农学通报》浏览原始摘要信息
点击此处可从《中国农学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号