首页 | 本学科首页   官方微博 | 高级检索  
     

基于牛肉大理石花纹标准(BMS)图像的纹理特征分析
引用本文:谢元澄,徐焕良,谢庄. 基于牛肉大理石花纹标准(BMS)图像的纹理特征分析[J]. 中国农业科学, 2010, 43(24): 5121-5128. DOI: 10.3864/j.issn.0578-1752.2010.24.016
作者姓名:谢元澄  徐焕良  谢庄
作者单位:(南京农业大学信息科技学院)
基金项目:国家引进国际先进农业科学技术(948)项目,中央高校项目科研业务专项资金项目
摘    要: 【目的】研究基于图像纹理特征来描述牛肉大理石花纹标准的方法。【方法】以日本、美国和澳大利亚的牛肉大理石花纹分级图像为基础,通过线性回归的方法来研究纹理特征与牛肉大理石花纹标准之间的内在关系。【结果】通过彩色梯度和局部二值模式(LBP)处理后提取灰度共生矩阵的4个特征:对比度、相关度、能量和一致性,这些特征可以准确地描述3个不同国家的牛肉大理石花纹标准。其中,能量特征对图像的差异性不敏感,可以作为3种牛肉大理石花纹标准的共性特征。【结论】基于牛肉LBP纹理特征的线性回归预测模型可以作为牛肉大理石花纹标准的一项合理评估依据。

关 键 词:牛肉大理石花纹标准  彩色梯度  局部二值模式  灰度共生矩阵  线性回归
收稿时间:2010-08-30;

Analysis of Texture Features Based on Beef Marbling Standards (BMS)Images
XIE Yuan-cheng,XU Huan-liang,XIE Zhuang. Analysis of Texture Features Based on Beef Marbling Standards (BMS)Images[J]. Scientia Agricultura Sinica, 2010, 43(24): 5121-5128. DOI: 10.3864/j.issn.0578-1752.2010.24.016
Authors:XIE Yuan-cheng  XU Huan-liang  XIE Zhuang
Affiliation:(College of Information Science and Technology, Nanjing Agricultural University)
Abstract:【Objective】Image processing has become one of the primary means of automatic detection of beef quality. This paper is a study on how to describe BMS (beef marbling standards) based on image texture features. 【Method】 Based on Japanese, American and Australian BMS grading images, linear regression was used to analyze the internal relationship between texture features and BMS.【Result】Four image texture features including contrast, correlation, energy and consistency, could be extracted after color gradient processing and LBP processing, and can be used to describe three different national BMS. One of the features, energy feature, was not sensitive to the beef grade image difference, so it can be used as the common feature among the three BMS.【Conclusion】The linear regression prediction model, based on LBP texture features, can be used as a reasonable basis of evaluation of BMS.
Keywords:BMS  color grads  LBP (Local Binary Patterns  GLCM  linear regression
本文献已被 万方数据 等数据库收录!
点击此处可从《中国农业科学》浏览原始摘要信息
点击此处可从《中国农业科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号