首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of the erythroid regenerative response in two different models of experimentally induced iron deficiency anemia
Authors:Burkhard Mary Jo  Brown Diane E  McGrath John P  Meador Vince P  Mayle Douglas A  Keaton M Joni  Hoffman Wherly P  Zimmermann John L  Abbott David L  Sun Steven C
Institution:Department of Microbiology, Pathology, and Parasitology, North Carolina State University, Raleigh, NC;Lilly Research Laboratories, Eli Lilly &Co., Greenfield, Ind;Schering-Plough Corporation, Kenilworth, NJ.
Abstract:Anemia was induced in weanling Sprague Dawley rats either by feeding an iron-deficient diet or by chronic phlebotomy. The erythroid regenerative response was then evaluated before and after a hemolytic event, and results were compared with those of a third group of control nonphlebotomized rats fed an iron-replete diet. Diet and phlebotomy groups developed a similar degree of anemia (mean hemoglobin concentration 7.9 g/dL and 7.8 g/dL, respectively; controls, 13.9 g/dL) and hypoferremia (mean serum iron concentration 25.4 microgram/dL and 34.9 microgram/dL, respectively; controls, 222.0 microgram/dL). However, the anemia in diet rats was nonregenerative (reticulocyte count, 83.1 X 10(3) cells/microliter) and associated with bone marrow erythroid hypoplasia; whereas the anemia in phlebotomy rats was regenerative (reticulocyte count, 169.6 X 10(3) cells/microliter) and associated with bone marrow erythroid hyperplasia. Thrombocytosis was seen in diet rats (1,580 X 10(3) cells/microliter) but not phlebotomy rats (901 X 10(3) cells/microliter) when compared with controls (809 X 10(3) cells/microliter). To further evaluate the regenerative capability, phenylhydrazine (PHZ) was administered to induce hemolysis. Erythrocyte mass declined approximately 25% in all groups, including controls. The reticulocytosis (265.3 X 10(3) cells/microliter) seen in phlebotomy rats was earlier and significantly greater than that seen in either diet or control rats. Hemoglobin concentration returned to pre-PHZ concentrations (7.9 g/dL) in phlebotomy rats within 4 days posthemolysis. In diet rats, the maximal regenerative response (176.3 X 10(3) cells/microliter) was not seen until 8 days posthemolysis, and hemoglobin (7.5 g/dL) did not return to pre-PHZ concentrations during the 8-day study. In many aspects, the anemia seen following diet- or phlebotomy-induced iron deficiency was similar. However, the erythroid regenerative capability varied depending on the mechanism by which anemia was induced and furthermore altered the efficiency of hemoglobin production following a hemolytic event. These results suggest that the availability of iron in the diet may modulate the pathogenesis of iron deficiency anemia.
Keywords:Anemia  erythropoiesis  iron deficiency  rat  regenerative  Sprague Dawley
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号