首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of partial substitution of dietary fish oil by vegetable oils on the metabolism of [1-14C] 18:3n-3 in isolated hepatocytes of European sea bass (Dicentrarchus labrax L.)
Authors:G Mourente  JR Dick
Institution:(1) Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Puerto Real (Cádiz), Spain;(2) Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
Abstract:The static or declining supply of fish oil from industrial fisheries demands the search of alternatives, such as plant (vegetable) oils, for diets in expanding marine aquaculture. Vegetable oils are rich in C18 polyunsaturated fatty acids but devoid of the n-3 highly unsaturated fatty acids in fish oils. Previous studies, primarily with salmonids, have shown that including vegetable oils in their diets increased hepatocyte fatty acid desaturation. In the present study, we have investigated the effects of dietary partial substitution of fish oil (FO) with rapeseed oil (RO), linseed oil (LO) and olive oil (OO) on the desaturation /elongation and, -oxidation capacities of 1-14C]18:3n-3 in isolated hepatocytes from European sea bass (Dicentrarchus labrax L.), in a simultaneous combined assay. Fish were fed during 34 weeks with diets containing 100% FO, or RO, LO and OO, each included at 60% with the balance being met by FO, with no detrimental effect upon growth or survival. The highest total desaturation rates were found in hepatocytes of fish fed FO diet (0.52±0.08 pmol/h/mg protein) and OO diet (0.43±0.09 pmol/h/mg protein), which represented 3.2% and 2.7% of total 1-14C]18:3n-3 incorporated, respectively. In contrast, lowest desaturation rates were presented by hepatocytes of fish fed LO and RO diets (0.23±0.06 and 0.14±0.05 pmol/h/mg protein, respectively) represented 1.4% and 0.9% of total 1-14C]18:3n-3 incorporated, respectively. The rates of 1-14C]18:3n-3 β-oxidized were between 11-fold and 35-fold higher than desaturation. However, no significant differences were observed among β-oxidation activities in hepatocytes of fish fed any of the diets. The present study demonstrated that the European sea bass, as a carnivorous marine fish, presented a ‘marine’ fish pattern in the metabolism of 18:3n-3 to 20:5n-3 and 22:6n-3. This species appeared to have all the enzymic activities necessary to produce 22:6n-3 but presented only extremely low rates of fatty acid bioconversion. Furthermore, nutritional regulation of hepatocyte fatty acid desaturation was minimal, and dietary vegetable oils did not increase desaturase activities, and in RO and LO treatments the activity was significantly lower. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:β  -oxidation  desaturation  European sea bass  fish oil  hepatocytes  linseed oil  olive oil  PUFA  rapeseed oil
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号