首页 | 本学科首页   官方微博 | 高级检索  
     检索      

虹鳟体质量和主要体尺性状异速生长的遗传分析
引用本文:詹金绵,王炳谦,谷伟,刘英杰,杨润清.虹鳟体质量和主要体尺性状异速生长的遗传分析[J].中国水产科学,2015,22(1):60-67.
作者姓名:詹金绵  王炳谦  谷伟  刘英杰  杨润清
作者单位:1. 上海海洋大学 水产与生命学院,上海 201306; 中国水产科学研究院,北京 100141
2. 中国水产科学研究院 黑龙江水产研究所,黑龙江 哈尔滨,150070
3. 中国水产科学研究院,北京,100141
摘    要:采用联合异速生长遗传模型,对中国水产科学研究院黑龙江水产研究所渤海冷水性鱼类试验站培育的F1杂交虹鳟(Oncorhynchus mykiss)和F2杂交虹鳟的体质量和体尺性状异速生长进行了遗传分析,旨在为虹鳟及其他水产动物异速生长的遗传参数估计和实现体质量与体型的同步选育奠定理论基础。首先采用逐步回归分析法选择体尺性状对体质量的异速生长显著的性状,建立最优表型联合静态、动态异速生长指数模型,随后构建了两个用于遗传分析多个静态、动态异速生长的随机回归模型。虹鳟多个体尺性状相对体质量的异速生长遗传分析结果表明,体长与体质量具有较大的异速生长指数,为1.633 8,且为正异速生长,而其他体尺性状相对体质量呈现负异速生长;遗传方差大小顺序和表型的偏异速生长指数一致,体宽和背鳍基长的异速生长的遗传相关最大,为-0.867 5,其次为体长和体高,为-0.619 4,最小的是-0.021 7,为体高和体宽。体长与体质量的动态异速生长的加性遗传方差估计值为0.292 9。结果表明,虹鳟体质量和主要体尺性状的异速生长是由遗传机制决定的,遗传方差及遗传相关的估计能够用来筛选优良亲本,这为进一步利用异速生长理论指导虹鳟及其他水产动物体质量与体型的同步选育提供了理论基础。

关 键 词:虹鳟  生长性状  异速生长  遗传分析
修稿时间:2015/1/14 0:00:00

Genetic analysis of relative growth in relation to morphological traits and body weight in rainbow trout, Oncorhynchus mykiss
ZHAN Jinmian,WANG Bingqian,GU Wei,LIU Yingjie,YANG Runqing.Genetic analysis of relative growth in relation to morphological traits and body weight in rainbow trout, Oncorhynchus mykiss[J].Journal of Fishery Sciences of China,2015,22(1):60-67.
Authors:ZHAN Jinmian  WANG Bingqian  GU Wei  LIU Yingjie  YANG Runqing
Institution:1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; 2. Chinese Academy of Fishery Sciences, Beijing 100141, China; 3. Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150
Abstract:

This is the first study to genetically analyze the relative growth of multiple partial body sizes in relation to the entire body size in rainbow trout, Oncorhynchus mykiss. The experimental groups were the first generation hybrid group (F1) and the second generation hybrid group (F 2) obtained from the Bohai Cold Water Fish Experimental Station of the Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences. By stepwise regression analysis, we optimized the phenotypic joint static/ontogenetic allometry scaling model to select the significant partial allometry scalings of multiple partial body sizes to entire body size. Two random regression models were constructed to genetically analyze multiple static/ontogenetic allometries. One model embeds the best joint static allometry model in to the fi xed and additive genetic effects of a simple animal model. The other model considers not only the fixed and additive genetic eff ects on the best joint ontogenetic allometry model, but also the time dependence of permanent environmental effects in the repeated records animal model. The genetic parameter estimation of multiple allometries can be implemented with restricted maximum likelihood for a random regression model. Application of the models proposed here is illustrated to genetically analyze jo int sta tic allometry scalings of multiple body shape traits to body weight and ontogenetic allometry scaling of body lengths to body weights repeatedly observed at different growth times in rainbow trout. The results showed that body length has the largest significant allometric association with body weight, and the order in genetic variances for allometry scalings is li kely to be consistent with that of phenotypic partial allometry scalings. The largest genetic correlation for allometry scaling was found to be −0.8675 between body width and dorsal-fin base length, followed by −0.6194 between body length and body depth, w hile −0.0217 was the minimum value. We estimated additive genetic variance for ontogenetic allometry of the body length to weight ratio as 0.2929. According to this study, the allometries of the morphological traits to body weights not only quantify differences in relative growth bet ween the morphological traits to body weights, but also measure the relative genetic gains of the morphological traits to the body weights by genetic analysis. Thus, the genetic parameter estimation for allometries may be useful for guidance in synchronously improving morphological traits and body weights in rainbow trout. This will help genetic manipulation of body shape as well as genetic improvement of body weight.

Keywords:Oncorhynchus mykiss  growth trait  allometry  genetic analysis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国水产科学》浏览原始摘要信息
点击此处可从《中国水产科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号