首页 | 本学科首页   官方微博 | 高级检索  
     检索      

黄鳍棘鲷家系亲缘关系鉴定
引用本文:朱克诚,宋岭,刘宝锁,郭华阳,郭梁,张楠,张殿昌.黄鳍棘鲷家系亲缘关系鉴定[J].水产学报,2020,44(3):351-357.
作者姓名:朱克诚  宋岭  刘宝锁  郭华阳  郭梁  张楠  张殿昌
作者单位:中国水产科学研究院南海水产研究所,农业农村部南海渔业资源开发利用重点实验室,广东广州 510300;广东省海洋生物种业工程技术研究中心,广东广州 510300;中国水产科学研究院南海水产研究所,农业农村部南海渔业资源开发利用重点实验室,广东广州 510300
基金项目:公益性行业(农业)科研专项(201403008);中国水产科学研究院基本科研业务费专项(2017HY-XKQ01)
摘    要:为了建立黄鳍棘鲷微卫星亲子鉴定技术,利用荧光引物和自动测序技术检测了自主开发的12对微卫星分子标记在505尾黄鳍棘鲷个体中的遗传多态性,并构建了亲子鉴定技术。结果显示,该研究中筛选的12个微卫星标记共检测到119个等位基因,平均等位基因数(N_a)为9.91,平均观测杂合度(H_o)为0.651,平均期望杂合度(H_e)为0.661,平均多态性信息含量(PIC)为0.621,具有丰富的多态性。此外,运用Cervus 3.0软件对已知系谱信息的112尾黄鳍棘鲷亲本和393尾子代个体进行模拟分析,结果显示,当双亲未知且置信度为95%时,12个标记的累积排除概率达99.58%;当微卫星标记数量为8时,累积排除概率达到99.1%。因此确定AL49、AL37、AL01、AL20、AL14、AL18、AL15和AL51共8个多态性较高的微卫星标记为黄鳍棘鲷微卫星亲子鉴定的核心体系。在双亲性别未知的情况下,其双亲的累积排除率为99.1%。根据黄鳍棘鲷子代的实际基因分型数据,实际鉴定率为89.31%。该研究构建的微卫星标记组合能为黄鳍棘鲷不同家系混养后的亲子鉴定、种群选育和分子辅助家系管理提供科学的技术手段。

关 键 词:黄鳍棘鲷  微卫星  亲子鉴定  模拟分析
收稿时间:2018/10/11 0:00:00
修稿时间:2018/11/29 0:00:00

Establishment of parentage determination in yellowfin seabream (Acanthopagrus latus)
ZHU Kecheng,SONG Ling,LIU Baosuo,GUO Huayang,GUO Liang,ZHANG Nan and ZHANG Dianchang.Establishment of parentage determination in yellowfin seabream (Acanthopagrus latus)[J].Journal of Fisheries of China,2020,44(3):351-357.
Authors:ZHU Kecheng  SONG Ling  LIU Baosuo  GUO Huayang  GUO Liang  ZHANG Nan and ZHANG Dianchang
Institution:Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China and Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;Engineer Technology Research Center of Marine Biological Seed of Guangdong Province, Guangzhou 510300, China
Abstract:In this study, using twelve novel microsatellite markers, we established a paternity test technology for Acanthopagrus latus based on a mixed family of A. latus including 112 parent individuals and 393 offspring individuals. Genetic diversity data demonstrated that there were 119 alleles observed and the mean number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He) and polymorphism information content (PIC) were 9.91, 0.651, 0.661, 0.621, respectively. Paternity analysis showed that the combined probability of exclusion reached 99.58% when both parents were unknown (confidence level, 95%) by 12 loci. And, the combined probability of exclusion reached 99.1% when both parents were unknown (confidence level, 95%) by 8 loci. Consequently, the 8 high polymorphic microsatellite markers (AL49, AL37, AL01, AL20, AL14, AL18, AL15 and AL51) made up the system of paternity test for A. latus. The cumulative exclusion rate of their parents was 99.1% without parents'' gender by 8 loci. The rate of assignment success for the real data set was only 89.31%. In conclusion, the combination of this novel 12 microsatellite markers in our study provided highly effective testing tools for the paternity identification, population breeding and molecular-assisted family management in A. Latus.
Keywords:Acanthopagrus latus  microsatellites  parentage determination  simulation analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水产学报》浏览原始摘要信息
点击此处可从《水产学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号