首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A dynamic optimisation model for the behaviour of tunas at ocean fronts
Authors:David S Kirby  Øyvind Fiksen  & Paul J B Hart
Institution:Fisheries Research Group, Department of Biology, University of Leicester, UK;Earth Observation Science Group, Department of Physics, University of Leicester, UK;National Institute of Water and Atmospheric Research (NIWA), Wellington, NZ;Department of Fisheries and Marine Biology, University of Bergen, Norway
Abstract:We present a model that simulates the foraging behaviour of tunas in the vicinity of ocean fronts. Stochastic dynamic programming is used to determine optimal habitat choice and swimming speed in relation to environmental variables (water temperature and clarity) and prey characteristics (abundance and energy density). By incorporating submodels for obligate physiological processes (gastric evacuation, standard and active metabolic costs) and sensory systems (visual feeding efficiency), we have integrated into a single fitness-based model many of the factors that might explain the aggregation of tunas at ocean fronts. The modelling technique describes fitness landscapes for all combinations of states, and makes explicit, testable predictions about time- and state-dependent behaviour. Enhanced levels of searching activity when hungry and towards the end of the day are an important feature of the optimal behaviour predicted. We consider the model to be particularly representative of the behaviour of the warm-water tunas or Neothunnus (e.g. skipjack, Katsuwonus pelamis , and yellowfin, Thunnus albacares ) and for surface-dwelling temperate tunas (e.g. young albacore, Thunnus alalunga ), which are often observed to aggregate near fronts. For the bluefin group (i.e. older albacore; northern and southern bluefin, Thunnus thynnus and Thunnus maccoyii ), for which extended vertical migrations are a significant and as yet unexplained component of behaviour, the model is able to reproduce observed behaviour by adopting the lower optimal temperature and standard metabolic rate of albacore. The model cannot explain why physiological differences exist between and within the different tuna species, but it does show how differences in susceptibility to thermal stress will permit different behaviour.
Keywords:behaviour  fronts  physiology  stochastic dynamic programming  tunas
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号