首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ecologically and evolutionarily sustainable fishing of the pikeperch Sander lucioperca: Lake Oulujärvi as an example
Authors:Anssi Vainikka  Pekka Hyvärinen
Institution:a Department of Biology, University of Eastern Finland & University of Oulu, P.O. Box 3000, FI-90014 University of Oulu, Oulu, Finland
b Finnish Game and Fisheries Research Institute, Manamasalontie 90, FI-88300 Paltamo, Finland
Abstract:Due to the multitude of participants and a diverse range of fishing gear used freshwater fisheries are often managed using minimum size limits (MSL) rather than regulations of total fishing effort. However, a concern has arisen whether attempts to improve ecological sustainability of fisheries by increasing MSLs would induce undesired adaptations to selective fishing. We examined the ecological and evolutionary impacts of varying fishing mortality rates under varying MSLs, with and without stockings, in an age-, size-, and maturity-structured evolutionary model which was parameterized for the Lake Oulujärvi pikeperch, Sander lucioperca. We found that at the current level of harvesting (fishing mortality rate, F = 0.7) and stockings (430 000 year−1), and under the assumption of strongly density-dependent growth, the nation-wide MSL of 370 mm maximizes theoretical biomass yield in a deterministic model but does not prevent severe recruitment overfishing under further increased fishing pressures or stochasticity in recruitment success. The recently imposed, local MSL of 450 mm better ensures stable yields, and even increases them if individual growth is density-independent, but further increase of MSL to 500 mm would already reduce yield especially if there was discard mortality for undersized fish. Given density-dependent growth, equal survival between wild and stocked fish, and sustainable fishing mortality rate, stockings do not increase yield or significantly improve the stability of yields. Evolutionarily stable size at maturation decreases under strong fishing mortality, but increased MSLs reduce the magnitude of this undesired effect. Negatively size-dependent natural mortality was found to have a positive effect on the otherwise negative selection for length-at-age. Increased MSLs also reduce the total selection for decreased length-at-age. Our results support the intentions to increase MSLs in order to improve both ecological and evolutionary sustainability of recreational fisheries.
Keywords:Fisheries management  Density-dependence  Fisheries-induced evolution  Population dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号