首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Water-use efficiency and physiological responses of maize under partial root-zone irrigation
Authors:Fusheng Li  Caihui Wei  Jianhua Zhang  Shaozhong Kang
Institution:a College of Agriculture, Guangxi University, Nanning, Guangxi 530005, China
b Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest Sci-Tech University of Agriculture and Forestry, Yangling, Shaanxi 712100, China
c Department of Biology, Hong Kong Baptist University, Hong Kong, China
d Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
Abstract:Alternate partial root-zone irrigation (APRI) is a water-saving irrigation method but also can regulate crop physiological responses. This study investigated how water-use efficiency (WUE) and other physiological responses were regulated at different growth stages when maize plants were applied with APRI and how these responses were recovered to control levels when full irrigation was resumed. A pot experiment was carried out at two fertilization levels and with three irrigation methods at the jointing stage (29-38 days after sowing) or during the jointing and tasselling stages (29-77 days after sowing). The irrigation methods included the conventional irrigation (CI), APRI and fixed PRI (FPRI, watering was fixed to one side). Compared to the CI, APRI at the jointing stage for 10 days or during the jointing and tasselling stages for 49 days reduced water consumption by 10.6-12.9 and 31.7-32.4%, respectively, but did not reduce total dry mass accumulation significantly, thus increased canopy WUE by 10.4-13.6 and 41.2-41.8%, respectively. FPRI reduced the total dry mass significantly even though it also improved canopy WUE. APRI had slight effect on the leaf relative water content (RWC), chlorophyll (Chl), carotenoid (CAR), proline (Pro) and malondialdehyde (MDA) contents and superoxide dismutase (SOD) and peroxidase (POD) activities from jointing to tasselling stages but recovery to the levels of CI was rapid after receiving full watering. In comparison, FPRI treatment significantly reduced leaf RWC, Chl and CAR contents and SOD and POD activities and increased the Pro and MAD contents. After receiving full watering, the above-mentioned physiological indexes in FPRI could not recover fully to the levels of CI. High fertilization treatment only increased leaf Chl content significantly and contributed little to the total dry mass accumulation. Our result suggests that APRI can make plants use water and nutrients more efficiently with better drought tolerance.
Keywords:Water-use efficiency  Biomass accumulation  Soil fertilization  Growth stage  Maize (Zea mays)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号