首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn
Authors:Salah E El-Hendawy  Essam A Abd El-Lattief  Mohamed S Ahmed  Urs Schmidhalter
Institution:aAgronomy Department, Faculty of Agriculture, Suez Canal University, Ismalia, Egypt;bAgronomy Department, Faculty of Agriculture, South Valley University, Qena, Egypt;cDepartment of Plant Science, Technical University of Munich, Am Hochanger 2, 85350 Freising-Weihenstephan, Germany
Abstract:The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.
Keywords:Corn  Drip irrigation  Evapotranspiration  Plant population  Sandy soil  IWUE
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号