首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative Enzyme Kinetics of Two Allelic Forms of Barley (Hordeum vulgare L.) Beta -amylase
Authors:Hordeum vulgare
Institution:The University of Adelaide, Department of Plant Science, Waite Campus, Glen Osmond, SA 5064, Australia
Abstract:The barley (Hordeum vulgare L.) varieties, Franklin and Schooner, contain two different allelic forms of beta -amylase (EC 3.2.1.2) encoded on chromosome 4H by the Bmy 1-Sd1 and Bmy 1-Sd2L alleles, respectively. The corresponding enzymes, referred to as Sd1 and Sd2L, were purified from both mature barley grain and germinated barley (green malt), and their physical and kinetic properties studied. Approximately 4 kDa were cleaved from both Sd1 and Sd2Lbeta -amylases after germination. The Kmvalue for green malt beta -amylase was less than that of mature grain beta -amylase for both varieties when potato starch was used as a substrate, although Vmaxwas similar. This indicated that proteolysis after germination increased the affinity of beta -amylase for potato starch. No significant kinetic differences were observed between beta -amylase from mature grain and green malt of the two barley varieties when amylose (degree of polymerisation 100 and 18) and maltopentaose were used as substrates. Kinetic differences were also observed between the two allelic forms of beta -amylase. Sd1 beta -amylase from green malt exhibited a lower Kmvalue for potato starch than Sd2L beta -amylase, demonstrating that at non-saturating starch concentrations Sd1 beta -amylase is better able to hydrolyse starch than Sd2L beta -amylase. As the degree of polymerisation of the substrates decreased from approximately 740 (potato starch) to 5 (maltopentaose), the Kmvalues for beta -amylase increased, whereas Vmaxvalues decreased. Maltose, the hydrolytic product of beta -amylase, was found to be a weak competitive inhibitor of both Sd1 and Sd2L green malt beta -amylases with respect to potato starch and amylose. Taken together the kinetic observations for bet a-amylase suggest that the allelic differences and C-terminal proteolysis might be exploited to improve the efficiency of starch hydrolysis during the mashing stage of the brewing process.
Keywords:beta -amylase  kinetics  barley  proteolysis  brewing  germination  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号