首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular genetic approaches to increasing mineral availability and vitamin content of cereals
Authors:Henrik Brinch-Pedersen, S  ren Borg, Birgitte Tauris,Preben B. Holm
Affiliation:aDepartment of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
Abstract:The present paper summarizes the current state of knowledge on molecular genetic approaches to increasing iron and zinc availability and vitamin content in cereals. We have also attempted to integrate the scientific issues into the wider context of human nutrition. In the cereal grain, iron and zinc are preferentially stored together with phytate in membrane-enclosed globoids in the protein storage vacuole (PSV) found in the aleurone and the embryo scutellum. The PSV is accordingly central for understanding mineral deposition during grain filling and mobilization of minerals during germination. Recent studies in Arabidopsis have led to the first identification of iron and zinc transporters of the PSV and further illustrate some of the dynamics associated with mineral and phytate transport and deposition into the vacuole. This provides new opportunities for modulating iron and zinc deposition in the cereal grain. Current strategies towards increasing the iron content of the endosperm are largely based on the expression of legume ferritin genes in an endosperm-specific manner. However, it is apparent that this approach, at least in rice, only allows a two- to three-fold increase in the iron content of the grain due to exhaustion of the iron stores in leaves. Further increases thus have to rely on additional uptake and transport of iron from the root. Phytate is generally considered to be the single most important anti-nutritional factor for iron and zinc availability. In the current paper we summarize attempts to increase phytase activity in the grain by transformation and evaluate the potential of this approach as well as the reduction of phytate biosynthesis for improving the bioavailability of iron and zinc. Vitamins constitute the second important group of micronutrients in grain and we discuss current efforts to increase the amounts of provitamin A, vitamin C and vitamin E.
Keywords:Minerals   Bioavailability   Cereals   Vitamins
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号