首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes of aryl hydrocarbon receptor in cardiac hypertrophy induced by high glucose in vitro
Authors:TANG Xue-jiao  XIAO Hua  ZHANG Lei  WEI Xiao  LEI Jian-ming  GUO Jing-wen
Institution:Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
Abstract:AIM: To investigate the changes of aryl hydrocarbon receptor (AhR) in the process of cardiomyocyte hypertrophy induced by high glucose, and to explore its potential mechanisms. METHODS: The rat cardiomyocytes (H9c2 cells) were divided into normal glucose group, high glucose group, DMSO group and resveratrol (an AhR antagonist) group. The content and distribution of AhR were observed with immunofluorescence staining. The myocardial cells were stained with rhodamine-labeled phalloidin to visualize cytoskeleton, and the cell surface area were determined after imaging by fluorescence microscopy. The generation of reactive oxygen species (ROS) in the cardiomyocytes was measured using a fluorescent probe DCFH-DA. The mRNA expression of AhR, CYP1A1, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were evaluated by real-time quantitative PCR (RT-qPCR). The protein levels of AhR, CYP1A1, ANP and BNP were assessed by Western blot. RESULTS: AhR was constitutively presented in the cytosol under normal-glucose condition and was translocated to the nuclei under high-glucose condition. High glucose induced cardiac hypertrophy, and increased ROS generation. Significant reductions in the cell size and ROS generation were observed after treated with resveratrol. The expression of AhR, CYP1A1, ANP and BNP at mRNA and protein levels in high glucose group was increased as compared with normal glucose group and resveratrol group, and the above-mentioned indexes significantly decreased in resveratrol group as compared with DMSO group. CONCLUSION: High glucose-induced cardiac hypertrophy increases AhR expression, which may be involved in the maintenance of glucose homeostasis in the cardiomyocytes. AhR translocation to the nucleus induced by high glucose results in the increases in CYP1A1 expression and ROS generation, which may be an important mechanism of high glucose-induced cardiomyocyte hypertrophy.
Keywords:High glucose  Cardiac hypertrophy  Aryl hydrocarbon receptor  
点击此处可从《园艺学报》浏览原始摘要信息
点击此处可从《园艺学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号