首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Closed cycle subirrigation with low concentration nutrient solution can be used for soilless tomato production in saline conditions
Authors:Francesco Montesano  Angelo Parente  Pietro Santamaria
Institution:1. Dipartimento di Scienze delle Produzioni Vegetali, Università degli Studi di Bari, 70126 Bari, Italy;2. Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
Abstract:Closed cycle soilless techniques can be adopted to minimize water and fertilizer losses in greenhouse cultivation. There is a general lack of information regarding the soilless cultivation of vegetables with closed cycle subirrigation techniques, specifically when using saline water. In this study, a trough bench subirrigation system (SUB), with two fertilizer concentrations (“100%”, containing 9.8 mol m−3 N-NO3, 1.6 mol m−3 P-H2PO4, 8.7 mol m−3 K+, 2.8 mol m−3 Ca+, 1.8 mol m−3 Mg+, 4 mol m−3 S-SO4, and “70%”, containing 70% of the macronutrient concentration) in the nutrient solution (NS), was compared with open cycle drip-irrigation (DRIP with “100%” NS). For all the three treatments, NS was prepared using rain water (0.05 dS m−1) and adding NaCl (1 g L−1), in order to simulate moderate saline irrigation water. The effect of the treatments on tomato (Solanum lycopersicum L.) plant growth, yield, fruit quality, water use efficiency (WUE) and fertilizer consumption was evaluated. Substrate and recirculating NS composition were also studied. Subirrigation, regardless of NS concentration, reduced plant height (by 30 cm), leaf area (by 1411 cm2), total fresh and dry weight (by 429 and 48.5 g plant−1, respectively) but not dry matter percentage of the whole plant, with respect to DRIP. Yield was reduced when plants were subirrigated with the higher concentrated NS, but no differences with open cycle DRIP were recorded when the lower NS concentration was used in SUB. Fruit quality was not affected by irrigation system or NS concentration. The higher WUE was obtained with subirrigation. NaCl accumulated similarly over the crop cycle in recirculating NS of both SUB treatments and in growing substrates of all the three treatments. Higher salt concentration was found in subirrigated substrates, in particular in the upper part of the substrate profile. Fertilizers accumulated in the subirrigated substrates when the higher NS concentration was used, but not when the NS concentration was reduced by 30%. The results of this study indicate that tomato can be grown successfully in a closed cycle subirrigation system, using saline water, by reducing the fertilizer NS concentration normally used with traditional open cycle systems.
Keywords:Solanum lycopersicum L    Through bench system  NaCl  Drip irrigation  Substrate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号