首页 | 本学科首页   官方微博 | 高级检索  
     


Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model
Authors:Tian-Ming Yen  Joou-Shian Lee
Affiliation:Department of Forestry, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan
Abstract:The purpose of this study was to compare carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests. The study site was located in the lower mountain area of central Taiwan, where both moso bamboo and China fir were rich. In addition, moso bamboo and China fir forests were surveyed on 12 and 19 plantations, respectively. We predicted carbon sequestration based on the allometric model for moso bamboo and China fir forests and compared the relationships between characteristics of bamboo forests and elevation. The results showed that mean diameter at breast height (DBH), culms per hectare and aboveground biomass were not clearly affected by elevation, whereas a negative correlation (R = −0.600, p = 0.039) between mean DBH and stand density was found for moso bamboo forests. Moreover, the aboveground carbon storage was higher for China fir forests than for moso bamboo (99.5 vs. 40.6 Mg ha−1). However, moso bamboo is an uneven-aged stand which is only composed of 1-5-year-old culms, while China fir is an even-aged stand and the age range is from 15 to 54 years, such that, per year, the mean aboveground carbon sequestration is 8.13 ± 2.15 and 3.35 ± 2.02 Mg ha−1 for moso bamboo and China fir, respectively. On the other hand, the mean carbon sequestration of China fir decreases with increasing the age class. Furthermore, the ratio of moso bamboo to China fir is 2.39 and a T-test showed that the aboveground carbon levels were significantly different between these two species; thus, moso bamboo is a species with high potential for carbon sequestration.
Keywords:Carbon sequestration   Moso bamboo (Phyllostachys heterocycla)   China fir (Cunninghamia lanceolata)   Allometric model   Carbon storage
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号